101 research outputs found

    Parameterized complexity of machine scheduling: 15 open problems

    Full text link
    Machine scheduling problems are a long-time key domain of algorithms and complexity research. A novel approach to machine scheduling problems are fixed-parameter algorithms. To stimulate this thriving research direction, we propose 15 open questions in this area whose resolution we expect to lead to the discovery of new approaches and techniques both in scheduling and parameterized complexity theory.Comment: Version accepted to Computers & Operations Researc

    Malleable Scheduling Beyond Identical Machines

    Get PDF
    In malleable job scheduling, jobs can be executed simultaneously on multiple machines with the processing time depending on the number of allocated machines. Jobs are required to be executed non-preemptively and in unison, in the sense that they occupy, during their execution, the same time interval over all the machines of the allocated set. In this work, we study generalizations of malleable job scheduling inspired by standard scheduling on unrelated machines. Specifically, we introduce a general model of malleable job scheduling, where each machine has a (possibly different) speed for each job, and the processing time of a job j on a set of allocated machines S depends on the total speed of S for j. For machines with unrelated speeds, we show that the optimal makespan cannot be approximated within a factor less than e/(e-1), unless P = NP. On the positive side, we present polynomial-time algorithms with approximation ratios 2e/(e-1) for machines with unrelated speeds, 3 for machines with uniform speeds, and 7/3 for restricted assignments on identical machines. Our algorithms are based on deterministic LP rounding and result in sparse schedules, in the sense that each machine shares at most one job with other machines. We also prove lower bounds on the integrality gap of 1+phi for unrelated speeds (phi is the golden ratio) and 2 for uniform speeds and restricted assignments. To indicate the generality of our approach, we show that it also yields constant factor approximation algorithms (i) for minimizing the sum of weighted completion times; and (ii) a variant where we determine the effective speed of a set of allocated machines based on the L_p norm of their speeds

    Dagstuhl Reports : Volume 1, Issue 2, February 2011

    Get PDF
    Online Privacy: Towards Informational Self-Determination on the Internet (Dagstuhl Perspectives Workshop 11061) : Simone Fischer-Hübner, Chris Hoofnagle, Kai Rannenberg, Michael Waidner, Ioannis Krontiris and Michael Marhöfer Self-Repairing Programs (Dagstuhl Seminar 11062) : Mauro Pezzé, Martin C. Rinard, Westley Weimer and Andreas Zeller Theory and Applications of Graph Searching Problems (Dagstuhl Seminar 11071) : Fedor V. Fomin, Pierre Fraigniaud, Stephan Kreutzer and Dimitrios M. Thilikos Combinatorial and Algorithmic Aspects of Sequence Processing (Dagstuhl Seminar 11081) : Maxime Crochemore, Lila Kari, Mehryar Mohri and Dirk Nowotka Packing and Scheduling Algorithms for Information and Communication Services (Dagstuhl Seminar 11091) Klaus Jansen, Claire Mathieu, Hadas Shachnai and Neal E. Youn

    Nearly-Linear Time LP Solvers and Rounding Algorithms for Scheduling Problems

    Get PDF
    We study nearly-linear time approximation algorithms for non-preemptive scheduling problems in two settings: the unrelated machine setting, and the identical machine with job precedence constraints setting, under the well-studied objectives such as makespan and weighted completion time. For many problems, we develop nearly-linear time approximation algorithms with approximation ratios matching the current best ones achieved in polynomial time. Our main technique is linear programming relaxation. For the unrelated machine setting, we formulate mixed packing and covering LP relaxations of nearly-linear size, and solve them approximately using the nearly-linear time solver of Young. For the makespan objective, we develop a rounding algorithm with (2+?)-approximation ratio. For the weighted completion time objective, we prove the LP is as strong as the rectangle LP used by Im and Li, leading to a nearly-linear time (1.45 + ?)-approximation for the problem. For problems in the identical machine with precedence constraints setting, the precedence constraints can not be formulated as packing or covering constraints. To achieve the nearly-linear running time, we define a polytope for the constraints, and leverage the multiplicative weight update (MWU) method with an oracle which always returns solutions in the polytope
    • …
    corecore