82 research outputs found

    Contract design of direct-load control programs and their optimal management by genetic algorithm

    Get PDF
    A computational model for designing direct-load control (DLC) demand response (DR) contracts is presented in this paper. The critical and controllable loads are identified in each node of the distribution system (DS). Critical loads have to be supplied as demanded by users, while the controllable loads can be connected during a determined time interval. The time interval at which each controllable load can be supplied is determined by means of a contract or compromise established between the utility operator and the corresponding consumers of each node of the DS. This approach allows us to reduce the negative impact of the DLC program on consumers’ lifestyles. Using daily forecasting of wind speed and power, solar radiation and temperature, the optimal allocation of DR resources is determined by solving an optimization problem through a genetic algorithm where the energy content of conventional power generation and battery discharging energy are minimized. The proposed approach was illustrated by analyzing a system located in the Virgin Islands. Capabilities and characteristics of the proposed method in daily and annual terms are fully discussed, as well as the influence of forecasting errors

    A New Layered Architecture for Future Big Data-driven Smart Homes

    Get PDF

    Heuristic strategies for NFV-enabled renewable and non-renewable energy management in the future IoT world

    Get PDF
    © 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.The ever-growing energy demand and the CO2 emissions caused by energy production and consumption have become critical concerns worldwide and drive new energy management and consumption schemes. In this regard, energy systems that promote green energy, customer-side participation enabled by the Internet of Things (IoT) technologies, and adaptive consumption mechanisms implemented on advanced communications technologies such as the Network Function Virtualization (NFV) emerge as sustainable and de-carbonized alternatives. On these modern schemes, diverse management algorithmic solutions can be deployed to promote the interaction between generation and consumption sides and optimize the use of available energy either from renewable or non-renewable sources. However, existing literature shows that management solutions considering features such as the dynamic nature of renewable energy generation, prioritization in energy provisioning if needed, and time-shifting capabilities to adapt the workloads to energy availability present a complexity NP-Hard. This condition imposes limits on applicability to a small number of energy demands or time-shifting values. Therefore, faster and less complex adaptive energy management approaches are needed. To meet these requirements, this paper proposes three heuristic strategies: a greedy strategy (GreedyTs), a genetic-algorithm-based solution (GATs), and a dynamic programming approach (DPTs) that, when deployed at the NFV domain, seeks the best possible scheduling of demands that lead to efficient energy utilization. The performance of the algorithmic strategies is validated through extensive simulations in several scenarios, demonstrating improvements in energy consumption and processing of demands. Additionally, simulation results reveal that the heuristic approaches produce high-quality solutions close to the optimal while executing among two and seven orders of magnitude faster and with applicability to scenarios with thousands and hundreds of thousands of energy demands.This work was supported by the Ministerio de Ciencia e Innovación of the Spanish Government under Project PID2019-108713RB-C51. The work of Christian Tipantuña was supported in part by the Escuela Politécnica Nacional and in part by Secretaría de Educación Superior, Ciencia, Tecnología e Innovación (SENESCYT).Peer ReviewedPostprint (published version

    Smart home power management system for electric vehicle battery charger and electrical appliance control

    Get PDF
    This paper presents a power management system (PMS) designed for smart homes aiming to deal with the new challenges imposed by the proliferation of plug-in electric vehicles (EVs) and their coexistence with other residential electrical appliances. The PMS is based on a hybrid wireless network architecture composed by a local hub/gateway and several Bluetooth Low Energy (BLE) and Wi-Fi sensor/actuator devices. These wireless devices are used to transfer information inside the smart home using the MQTT (Message Queuing Telemetry Transport) protocol. Based on the proposed solution, the current consumption of the EV battery charger and other residential electrical appliances are dynamically monitored and controlled by using a configurable algorithm, ensuring that the total current consumption does not cause the tripping of the home circuit breaker. An Android client application allows the user to monitor and configure the system operation in real-time, a developed Wi Fi smart plug permits to measure the RMS values of current of the connected electrical appliance and change its state of operation remotely, and an EV battery charger may be controlled in terms of operating power according to set-points received from the Android client application. Experimental tests are used to evaluate the quality of service provided by the developed smart home platform in terms of communication delay and reliability. An experimental validation for different conditions of operation of the proposed smart home PMS concerning the power operation of the EV battery charger with the proposed control algorithm is also presented.info:eu-repo/semantics/acceptedVersio

    AI-driven approaches for optimizing the energy efficiency of integrated energy system

    Get PDF
    To decarbonize the global energy system and replace the unidirectional architecture of existing grid networks, integrated and electrified energy systems are becoming more demanding. Energy integration is critical for renewable energy sources like wind, solar, and hydropower. However, there are still specific challenges to overcome, such as their high reliance on the weather and the complexity of their integrated operation. As a result, this research goes through the study of a new approach to energy service that has arisen in the shape of data-driven AI technologies, which hold tremendous promise for system improvement while maximizing energy efficiency and reducing carbon emissions. This research aims to evaluate the use of data-driven AI techniques in electrical integrated energy systems, focusing on energy integration, operation, and planning of multiple energy supplies and demand. Based on the formation point, the main research question is: "To what extent do AI algorithms contribute to attaining greater efficiency of integrated grid systems?". It also included a discussion on four key research areas of AI application: Energy and load prediction, fault prediction, AI-based technologies IoT used for smart monitoring grid system optimization such as energy storage, demand response, grid flexibility, and Business value creation. The study adopted a two-way approach that includes empirical research on energy industry expert interviews and a Likert scale survey among energy sector representatives from Finland, Norway, and Nepal. On the other hand, the theoretical part was from current energy industry optimization models and a review of publications linked to a given research issue. The research's key findings were AI's significant potential in electrically integrated energy systems, which concluded AI's implication as a better understanding of energy consumption patterns, highly effective and precise energy load and fault prediction, automated energy management, enhanced energy storage system, more excellent business value, a smart control center, smooth monitoring, tracking, and communication of energy networks. In addition, further research directions are prospects towards its technical characteristics on energy conversion

    Optimized energy consumption model for smart home using improved differential evolution algorithm

    Get PDF
    Abstract: This paper proposes an improved enhanced differential evolution algorithm for implementing demand response between aggregator and consumer. The proposed algorithm utilizes a secondary population archive, which contains unfit solutions that are discarded by the primary archive of the earlier proposed enhanced differential evolution algorithm. The secondary archive initializes, mutates and recombines candidates in order to improve their fitness and then passes them back to the primary archive for possible selection. The capability of this proposed algorithm is confirmed by comparing its performance with three other wellperforming evolutionary algorithms: enhanced differential evolution, multiobjective evolutionary algorithm based on dominance and decomposition, and non-dominated sorting genetic algorithm III. This is achieved by testing the algorithms’ ability to optimize a multiobjective optimization problem representing a smart home with demand response aggregator. Shiftable and non-shiftable loads are considered for the smart home which model energy usage profile for a typical household in Johannesburg, South Africa. In this study, renewable sources include battery bank and rooftop photovoltaic panels. Simulation results show that the proposed algorithm is able to optimize energy usage by balancing load scheduling and contribution of renewable sources, while maximizing user comfort and minimizing peak-to-average ratio

    Modeling and Optimizing Energy Supply and Demand in Home Area Power Network (HAPN)

    Get PDF
    Internet of energy based smart power grids demonstrate high in-feed from renewable energy resources (RESs) and lofty out-feed to energy consumers. Uncertainties evolved by incorporating RESs and time-varying energy consumption present immense challenges to the optimal control of smart power networks. To deal with these challenges, it is important to make the system deterministic by making time-ahead prediction and scheduling of power supply and demand. The present work confers a model of a co-scheduling framework, organizing cost-efficient activation of energy supply entities (ESEs) and load demands in a home area power network (HAPN). It integrates roof-top photovoltaic (PV) panels, diesel energy generator (DE), energy storage devices (ESDs), and smart load demands (SLDs) along with grid-supplied power. The scheduling model is based on mixed-integer linear programming (MILP) framework, incorporates a “min-max” optimization algorithm that reduces the daily energy bills, maintains high comfort level for the energy consumers, and increases the self-sufficiency of the home. The proposed strategy exploits the flexibility in dynamic energy price signals and SLDs of various classes, providing day-ahead cost-optimal scheduling decisions for incorporated energy entities. A linearized component-based model is developed, considering inefficiencies, taking various power phase modes of the SLDs along with the cost of operation, maintenance, and degradation of the equipment. A case study based on numerical analysis determines the particular features of the proposed HAPN model. Simulation results demonstrate the real prospect of our implemented strategy, utilizing a cost-effective optimal blend of distinct energy entities in a smart home

    An Iterative Optimization and Learning-based IoT System for Energy Management of Connected Buildings

    Get PDF
    Buildings account for nearly 40% of primary energy and 36% of greenhouse emissions, which is one of the main factors driving climate change. Reducing energy consumption in buildings toward zero-energy buildings is a vital pillar to ensure that future climate and energy targets are reached. However, due to the high uncertainty of building loads and customer comfort demands, and extremely nonlinear building thermal characteristics, developing an effective zero-energy building energy management (BEM) technology is facing great challenges. This paper proposes a novel learning-based and iterative IoT system to address these challenges to achieve the zero-energy objective in BEM of connected buildings. Firstly, all buildings in the IoT-based BEM system share their operation data with an aggregator. Secondly, the aggregator uses these historical data to train a deep reinforcement learning model based on the Deep Deterministic Policy Gradient method. The learning model generates pre-cooling or pre-heating control actions to achieve zero-energy BEM for building heating ventilation and air conditioning (HVAC) systems. Thirdly, for solving the coupling problem between HVAC systems and building internal heat gain loads, an iterative optimization algorithm is developed to integrate physics-based and learning-based models to minimize the deviation between the on-site solar photovoltaic generated energy and the actual building energy consumption by properly scheduling building loads, electric vehicle charging cycles and the energy-storage system. Lastly, the optimal load operation scheduling is generated by considering customers’ comfort requirements. All connected buildings then operate their loads based on the load operation schedule issued by the aggregator. The proposed learning-based and iterative IoT system is validated via simulation with real-world building data from the Pecan Street project

    Net zero supply chain performance and industry 4.0 technologies: past review and present introspective analysis for future research directions

    Get PDF
    Interest in applying Industry 4.0 technologies in supply chain operations has increased significantly due to the urgent need to combat climate change and achieve net-zero emissions. This study aims to thoroughly comprehend how Industry 4.0 technologies affect the efficiency of net-zero supply chains. To do so, the study systematically reviews the existing research using 68 academic papers that are thematically analysed and classified by potentials associated with Industry 4.0 in the context of net zero supply chain performance. The findings of this systematic literature review highlight the multifaceted role of Industry 4.0 technologies in achieving net-zero supply chain performance. However, the study also identifies challenges related to policy, technology, economy, and markets to harness these technologies effectively. A conceptual framework is proposed to help organizations strategically leverage Industry 4.0 technologies for sustainable supply chain performance. By identifying knowledge gaps, the review provides a roadmap for future research to explore the complex dynamics at the intersection of Industry 4.0 and sustainability. Practically, the study offers valuable insights for supply chain managers and policymakers on the opportunities and challenges associated with adopting Industry 4.0 technologies for sustainable practices. With the goal of achieving net-zero supply chain performance, this paper emphasizes the importance of a holistic, integrated approach to technology adoption and sustainability strategies
    • …
    corecore