867,638 research outputs found

    Quality-driven SoC architecture synthesis for embedded applications.

    Get PDF
    The recent spectacular progress in modern nanoelectronics created a big stimulus towards development of SoCs for embedded applications. Unfortunately, it also introduced unusual silicon and system complexity and heterogeneity, which result in many serious SoC development issues. Additional difficult to solve issues are due to very high throughput and low energy demands of many modern embedded applications. These issues cannot be resolved without new more adequate system architecture concepts, as well as, methods and EDA-tools for an adequate system-level design exploration and multi-objective optimal system architecture synthesis. This tutorial discusses the problems of multi-objective optimal architecture synthesis and trade-off exploitation for complex hard real-time embedded heterogeneous multi-processor SoCs, and model-based semi-automatic architecture synthesis methods that enable its effective and efficient solution. It thoroughly discusses the abstract models of the architecture design issue that involve the abstract system behavior models, system platform models and multi-objective decision models, as well as, the construction of the models and their usage for the actual system architecture exploration and multi-objective optimal architecture synthesis. In the role of examples, it uses the system architecture exploration and synthesis methods and the corresponding EDA-tools that we recently developed, and the SoC architectures synthesised with our tools for several real-world designs related to the newest highly demanding wireless communication and multimedia standards

    Miniaturized water flow and level monitoring system for flood disaster early warning

    Get PDF
    This study presents the performance of a prototype miniaturised water flow and water level monitoring sensor designed towards supporting flood disaster early warning systems. The design involved selection of sensors, coding to control the system mechanism, and automatic data logging and storage. During the design phase,the apparatus was constructed where all the components were assembled using locally sourced items. Subsequently, under controlled laboratory environment, the system was tested by running water through the inlet during which the flow rate and rising water levels are automatically recorded and stored in a database via Microsoft Excel using Coolterm software. The system is simulated such that the water level readings measured in centimeters is output in meters using a multiplicative of 10. A total number of 80 readings were analyzed to evaluate the performance of the system. The result shows that the system is sensitive to water level rise and yielded accurate measurement of water level. But, the flow rate fluctuates due to the manual water supply that produced inconsistent flow. It was also observed that the flow sensor has a duty cycle of 50% of operating time under normal condition which implies that the performance of the flow sensor is optimal. KEY WORDS: Flood Monitoring, Early Warning System

    An optimization model for the US Air-Traffic System

    Get PDF
    A systematic approach for monitoring U.S. air traffic was developed in the context of system-wide planning and control. Towards this end, a network optimization model with nonlinear objectives was chosen as the central element in the planning/control system. The network representation was selected because: (1) it provides a comprehensive structure for depicting essential aspects of the air traffic system, (2) it can be solved efficiently for large scale problems, and (3) the design can be easily communicated to non-technical users through computer graphics. Briefly, the network planning models consider the flow of traffic through a graph as the basic structure. Nodes depict locations and time periods for either individual planes or for aggregated groups of airplanes. Arcs define variables as actual airplanes flying through space or as delays across time periods. As such, a special case of the network can be used to model the so called flow control problem. Due to the large number of interacting variables and the difficulty in subdividing the problem into relatively independent subproblems, an integrated model was designed which will depict the entire high level (above 29000 feet) jet route system for the 48 contiguous states in the U.S. As a first step in demonstrating the concept's feasibility a nonlinear risk/cost model was developed for the Indianapolis Airspace. The nonlinear network program --NLPNETG-- was employed in solving the resulting test cases. This optimization program uses the Truncated-Newton method (quadratic approximation) for determining the search direction at each iteration in the nonlinear algorithm. It was shown that aircraft could be re-routed in an optimal fashion whenever traffic congestion increased beyond an acceptable level, as measured by the nonlinear risk function

    A Global Optimization Approach Integrating Low Frequency Switching Harmonics Standard for Electric Actuators Design in Aircraft Electrical Networks: Harmonics/Weight Optimization

    No full text
    International audienceIn aircraft applications, ensuring the power quality of the electrical system is one of the critical constraints during network equipment design. This task must be done in accordance with additional constraints like the global weight, cost and volume. In order to prevent high level disturbances in aircraft networks, international standards have fixed the conducted EMI levels that power converters are allowed to emit. On the other hand, respecting these standards at the design step requires analytical and semi-analytical models that are able to achieve a real system analysis and to develop optimized equipments adapted to the network requirements. In this paper we paved the way towards an anticipatory estimation of low frequency harmonics in a typical electrical actuator topology (Filter+Converter+Motor+Reductor). Several models (Three-phase PMW inverter, passive filter, gear reducers and a permanent magnet synchronous machine) were implemented in CADES software in order to find an optimal harmonics/weight Pareto solution using a deterministic or hybrid optimization approach allowing fast optimizations with a high number of parameters and constraints

    Applicability of thermal energy storage in future district heating system - Design methodologies and performance evaluations

    Get PDF
    District heating (DH) enables efficient and economical utilization of energy resources to satisfy the heat and hot water demands in buildings and is, thereby, well-established in Northern European countries. To achieve the future renewable energy system, the current DH systems are proved to undergo transitions towards the future DH systems, with major characteristics including renewable-based heat sources, low temperature networks, lower heating demands and smart controls. An important step is the coordination of heating and electricity sectors to achieve synergies and optimal solutions for the overall energy system, which is also known as the smart energy systems. Such goal could be achieved in a cost-effective manner by the flexibilities added from short-term thermal energy storage (TES) technologies. Despite the importance of TES has been demonstrated in previous studies, giving drastic changes compared to the current systems, the practical applicability of TES in the future DH systems remains unknown. The proposed benefits of TES might deviate from expectation considering the future characteristics, such as the low storage temperature levels and short space-heating period. Furthermore, the current studies about the TES applications have mostly focused on specific case studies. The findings are of limited applicability because they cannot be easily generalized and extrapolated to other future conditions. To explore the practical challenges and optimal applications of short-term TES units in the future, a systematic design framework that considers the diverse factors from top-level targets to bottom-level implementations is developed in this study. The top-level theoretical analysis method is developed to identify the load shifting potentials and associated storage capacities for the whole energy system, by comparing and matching energy supply and demand profiles. Compared to current bottom-up detailed system models, the proposed method requires only the energy profiles, which has resulted in much shorter analysis time. The method is further validated by complex system models, and because a good agreement has been achieved, it can be applied in various scenarios to efficiently pre-study the storage potentials. Then, the design of the practical TES capacity is derived from the theoretical result by considering performance indicators during realistic operations, such as power-to-heat conversion efficiency and heat loss efficiency.On bottom-level implementations, four typical short-term TES technologies were investigated including central water tank (CWT), district heating network inertia (DHNI), domestic hot water tank (DHWT), and building thermal mass (BTM). For this purpose, an integrated bottom-level model to simulate the operation dynamics of the district heating systems and to optimize the use of the TES units is developed. Techno-economic analysis and comparisons of TES technologies were performed on a variety of scenarios, which are representatives of the main characteristics of the current middle-temperature district heating system and future low-temperature district heating system. The changes in the source side, transportation networks and end-use building demands are considered. As a result, a performance map of the TES technologies indicating the strong links between the system characteristics and optimal TES applications has been identified. Based on that, the optimal combinations of TES technologies were proposed for a LTDH system. Consequently, combining this with top-level methods, the overall potentials and roles of short-term TES were identified by a systematic design framework

    Application of monitoring network design and feedback information for adaptive management of coastal groundwater resources

    Get PDF
    Optimal strategies for the management of coastal groundwater resources can be derived using coupled simulation-optimization based management models. However, the management strategy actually implemented on the field sometimes deviates from the recommended optimal strategy, resulting in field-level deviations. Monitoring these field-level deviations during actual implementation of the recommended optimal management strategy and sequentially updating the management model using the feedback information is an important step towards efficient adaptive management of coastal groundwater resources. In this study, a three-phase adaptive management framework for a coastal aquifer subjected to saltwater intrusion is applied and evaluated for a regional-scale coastal aquifer study area. The methodology adopted includes three sequential components. First, an optimal management strategy (consisting of groundwater extraction from production and barrier wells) is derived and implemented for optimal management of the aquifer. The implemented management strategy is obtained by solving a homogenous ensemble-based coupled simulation-optimization model. Second, a regional-scale optimal monitoring network is designed for the aquifer system considering possible user noncompliance of a recommended management strategy, and uncertainties in estimating aquifer parameters. A new monitoring network design objective function is formulated to ensure that candidate monitoring wells are placed in high risk (highly contaminated) locations. In addition, a new methodology is utilized to select candidate monitoring wells in areas representative of the entire model domain. Finally, feedback information in the form of measured concentrations obtained from the designed optimal monitoring wells is used to sequentially modify pumping strategies for future time periods in the management horizon. The developed adaptive management framework is evaluated by applying it to the Bonriki aquifer system located in Kiribati, which is a small developing island country in the South Pacific region. Overall, the results from this study suggest that the implemented adaptive management strategy has the potential to address important practical implementation issues arising due to noncompliance of an optimal management strategy and uncertain aquifer parameters

    Distribution of the birds of the Philippines: biogeography and conservation priorities

    Get PDF
    The Philippine islands hold a concentration of species diversity and endemism of global importance, yet few studies have analyzed biogeographic patterns or attempted to prioritize areas for conservation within the archipelago. We analyzed distributions of 386 species on 28 Philippine islands and island groups, documenting intense concentration of species richness, especially of endemic species, on the two largest islands, Mindanao and Luzon. Factors identified as influencing species richness included island area, maximum elevation, and Pleistocene patterns of connection and isolation. Reserve systems were developed based on heuristic complementarity algorithms, and compared with the existing Integrated Protected Areas (IPAS) system in the country, showing that IPAS is an impressive first step towards protecting avian diversity in the country. Addition of presently proposed reserves on Palawan and Mindoro would make IPAS a near-optimal reserve design, at least at the level of island representation. Important challenges remain, however, with regard to design of reserve systems within islands to represent complete island avifaunas

    The design of environmental test rigs

    Get PDF
    Product reliability and its environmental performance have become critical elements within a product's specification and design. To obtain a high level of confidence in the reliability of the design it is customary to test the design under realistic conditions in a laboratory. The objective of the work is to examine the feasibility of designing mechanical test rigs which exhibit prescribed dynamical characteristics. The design is then attached to the rig and excitation is applied to the rig, which then transmits representative vibration levels into the product. The philosophical considerations made at the outset of the project are discussed as they form the basis for the resulting design methodologies. It is attempted to directly identify the parameters of a test rig from the spatial model derived during the system identification process. It is shown to be impossible to identify a feasible test rig design using this technique. A finite dimensional optimal design methodology is developed which identifies the parameters of a discrete spring/mass system which is dynamically similar to a point coordinate on a continuous structure. This design methodology is incorporated within another procedure which derives a structure comprising a continuous element and a discrete system. This methodology is used to obtain point coordinate similarity for two planes of motion, which is validated by experimental tests. A limitation of this approach is that it is impossible to achieve multi-coordinate similarity due to an interaction of the discrete system and the continuous element at points away from the coordinate of interest. During the work the importance of the continuous element is highlighted and a design methodology is developed for continuous structures. The design methodology is based upon distributed parameter optimal design techniques and allows an initial poor design estimate to be moved in a feasible direction towards an acceptable design solution. Cumulative damage theory is used to provide a quantitative method of assessing the quality of dynamic similarity. It is shown that the combination of modal analysis techniques and cumulative damage theory provides a feasible design synthesis methodology for representative test rigs
    corecore