24 research outputs found

    From Weak to Strong LP Gaps for All CSPs

    Get PDF
    We study the approximability of constraint satisfaction problems (CSPs) by linear programming (LP) relaxations. We show that for every CSP, the approximation obtained by a basic LP relaxation, is no weaker than the approximation obtained using relaxations given by Omega(log(n)/log(log(n))) levels of the Sherali-Adams hierarchy on instances of size n. It was proved by Chan et al. [FOCS 2013] (and recently strengthened by Kothari et al. [STOC 2017]) that for CSPs, any polynomial size LP extended formulation is no stronger than relaxations obtained by a super-constant levels of the Sherali-Adams hierarchy. Combining this with our result also implies that any polynomial size LP extended formulation is no stronger than simply the basic LP, which can be thought of as the base level of the Sherali-Adams hierarchy. This essentially gives a dichotomy result for approximation of CSPs by polynomial size LP extended formulations. Using our techniques, we also simplify and strengthen the result by Khot et al. [STOC 2014] on (strong) approximation resistance for LPs. They provided a necessary and sufficient condition under which Omega(loglog n) levels of the Sherali-Adams hierarchy cannot achieve an approximation better than a random assignment. We simplify their proof and strengthen the bound to Omega(log(n)/log(log(n))) levels

    Directed Steiner Tree and the Lasserre Hierarchy

    Full text link
    The goal for the Directed Steiner Tree problem is to find a minimum cost tree in a directed graph G=(V,E) that connects all terminals X to a given root r. It is well known that modulo a logarithmic factor it suffices to consider acyclic graphs where the nodes are arranged in L <= log |X| levels. Unfortunately the natural LP formulation has a |X|^(1/2) integrality gap already for 5 levels. We show that for every L, the O(L)-round Lasserre Strengthening of this LP has integrality gap O(L log |X|). This provides a polynomial time |X|^{epsilon}-approximation and a O(log^3 |X|) approximation in O(n^{log |X|) time, matching the best known approximation guarantee obtained by a greedy algorithm of Charikar et al.Comment: 23 pages, 1 figur

    Strengths and Limitations of Linear Programming Relaxations

    Get PDF
    Many of the currently best-known approximation algorithms for NP-hard optimization problems are based on Linear Programming (LP) and Semi-definite Programming (SDP) relaxations. Given its power, this class of algorithms seems to contain the most favourable candidates for outperforming the current state-of-the-art approximation guarantees for NP-hard problems, for which there still exists a gap between the inapproximability results and the approximation guarantees that we know how to achieve in polynomial time. In this thesis, we address both the power and the limitations of these relaxations, as well as the connection between the shortcomings of these relaxations and the inapproximability of the underlying problem. In the first part, we study the limitations of LP relaxations of well-known graph problems such as the Vertex Cover problem and the Independent Set problem. We prove that any small LP relaxation for the aforementioned problems, cannot have an integrality gap strictly better than 22 and ω(1)\omega(1), respectively. Furthermore, our lower bound for the Independent Set problem also holds for any SDP relaxation. Prior to our work, it was only known that such LP relaxations cannot have an integrality gap better than 1.51.5 for the Vertex Cover Problem, and better than 22 for the Independent Set problem. In the second part, we study the so-called knapsack cover inequalities that are used in the current best relaxations for numerous combinatorial optimization problems of covering type. In spite of their widespread use, these inequalities yield LP relaxations of exponential size, over which it is not known how to optimize exactly in polynomial time. We address this issue and obtain LP relaxations of quasi-polynomial size that are at least as strong as that given by the knapsack cover inequalities. In the last part, we show a close connection between structural hardness for k-partite graphs and tight inapproximability results for scheduling problems with precedence constraints. This connection is inspired by a family of integrality gap instances of a certain LP relaxation. Assuming the hardness of an optimization problem on k-partite graphs, we obtain a hardness of 2ε2-\varepsilon for the problem of minimizing the makespan for scheduling with preemption on identical parallel machines, and a super constant inapproximability for the problem of scheduling on related parallel machines. Prior to this result, it was only known that the first problem does not admit a PTAS, and the second problem is NP-hard to approximate within a factor strictly better than 2, assuming the Unique Games Conjecture

    A Birthday Repetition Theorem and Complexity of Approximating Dense CSPs

    Get PDF
    A (k×l)(k \times l)-birthday repetition Gk×l\mathcal{G}^{k \times l} of a two-prover game G\mathcal{G} is a game in which the two provers are sent random sets of questions from G\mathcal{G} of sizes kk and ll respectively. These two sets are sampled independently uniformly among all sets of questions of those particular sizes. We prove the following birthday repetition theorem: when G\mathcal{G} satisfies some mild conditions, val(Gk×l)val(\mathcal{G}^{k \times l}) decreases exponentially in Ω(kl/n)\Omega(kl/n) where nn is the total number of questions. Our result positively resolves an open question posted by Aaronson, Impagliazzo and Moshkovitz (CCC 2014). As an application of our birthday repetition theorem, we obtain new fine-grained hardness of approximation results for dense CSPs. Specifically, we establish a tight trade-off between running time and approximation ratio for dense CSPs by showing conditional lower bounds, integrality gaps and approximation algorithms. In particular, for any sufficiently large ii and for every k2k \geq 2, we show the following results: - We exhibit an O(q1/i)O(q^{1/i})-approximation algorithm for dense Max kk-CSPs with alphabet size qq via Ok(i)O_k(i)-level of Sherali-Adams relaxation. - Through our birthday repetition theorem, we obtain an integrality gap of q1/iq^{1/i} for Ω~k(i)\tilde\Omega_k(i)-level Lasserre relaxation for fully-dense Max kk-CSP. - Assuming that there is a constant ϵ>0\epsilon > 0 such that Max 3SAT cannot be approximated to within (1ϵ)(1-\epsilon) of the optimal in sub-exponential time, our birthday repetition theorem implies that any algorithm that approximates fully-dense Max kk-CSP to within a q1/iq^{1/i} factor takes (nq)Ω~k(i)(nq)^{\tilde \Omega_k(i)} time, almost tightly matching the algorithmic result based on Sherali-Adams relaxation.Comment: 45 page

    On Approximability, Convergence, and Limits of CSP Problems

    Get PDF
    This thesis studies dense constraint satisfaction problems (CSPs), and other related optimization and decision problems that can be phrased as questions regarding parameters or properties of combinatorial objects such as uniform hypergraphs. We concentrate on the information that can be derived from a very small substructure that is selected uniformly at random. In this thesis, we present a unified framework on the limits of CSPs in the sense of the convergence notion of Lovasz-Szegedy that depends only on the remarkable connection between graph sequences and exchangeable arrays established by Diaconis-Janson. In particular, we formulate and prove a representation theorem for compact colored r-uniform directed hypergraphs and apply this to rCSPs. We investigate the sample complexity of testable r-graph parameters, and discuss a generalized version of ground state energies (GSE) and demonstrate that they are efficiently testable. The GSE is a term borrowed from statistical physics that stands for a generalized version of maximal multiway cut problems from complexity theory, and was studied in the dense graph setting by Borgs et al. A notion related to testing CSPs that are defined on graphs, the nondeterministic property testing, was introduced by Lovasz-Vesztergombi, which extends the graph property testing framework of Goldreich-Goldwasser-Ron in the dense graph model. In this thesis, we study the sample complexity of nondeterministically testable graph parameters and properties and improve existing bounds by several orders of magnitude. Further, we prove the equivalence of the notions of nondeterministic and deterministic parameter and property testing for uniform dense hypergraphs of arbitrary rank, and provide the first effective upper bound on the sample complexity in this general case

    On approximability and LP formulations for multicut and feedback set problems

    Get PDF
    Graph cut algorithms are an important tool for solving optimization problems in a variety of areas in computer science. Of particular importance is the min ss-tt cut problem and an efficient (polynomial time) algorithm for it. Unfortunately, efficient algorithms are not known for several other cut problems. Furthermore, the theory of NP-completeness rules out the existence of efficient algorithms for these problems if the PNPP\neq NP conjecture is true. For this reason, much of the focus has shifted to the design of approximation algorithms. Over the past 30 years significant progress has been made in understanding the approximability of various graph cut problems. In this thesis we further advance our understanding by closing some of the gaps in the known approximability results. Our results comprise of new approximation algorithms as well as new hardness of approximation bounds. For both of these, new linear programming (LP) formulations based on a labeling viewpoint play a crucial role. One of the problems we consider is a generalization of the min ss-tt cut problem, known as the multicut problem. In a multicut instance, we are given an undirected or directed weighted supply graph and a set of pairs of vertices which can be encoded as a demand graph. The goal is to remove a minimum weight set of edges from the supply graph such that all the demand pairs are disconnected. We study the effect of the structure of the demand graph on the approximability of multicut. We prove several algorithmic and hardness results which unify previous results and also yield new results. Our algorithmic result generalizes the constant factor approximations known for the undirected and directed multiway cut problems to a much larger class of demand graphs. Our hardness result proves the optimality of the hitting-set LP for directed graphs. In addition to the results on multicut, we also prove results for multiway cut and another special case of multicut, called linear-3-cut. Our results exhibit tight approximability bounds in some cases and improve upon the existing bound in other cases. As a consequence, we also obtain tight approximation results for related problems. Another part of the thesis is focused on feedback set problems. In a subset feedback edge or vertex set instance, we are given an undirected edge or vertex weighted graph, and a set of terminals. The goal is to find a minimum weight set of edges or vertices which hit all of the cycles that contain some terminal vertex. There is a natural hitting-set LP which has an Ω(logk)\Omega(\log k) integrality gap for kk terminals. Constant factor approximation algorithms have been developed using combinatorial techniques. However, the factors are not tight, and the algorithms are sometimes complicated. Since most of the related problems admit optimal approximation algorithms using LP relaxations, lack of good LP relaxations was seen as a fundamental roadblock towards resolving the approximability of these problems. In this thesis we address this by developing new LP relaxations with constant integrality gaps for subset feedback edge and vertex set problems

    LIPIcs, Volume 261, ICALP 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 261, ICALP 2023, Complete Volum
    corecore