53 research outputs found

    Towards Optimal Depth Reductions for Syntactically Multilinear Circuits

    Get PDF
    We show that any nn-variate polynomial computable by a syntactically multilinear circuit of size poly⁥(n)\operatorname{poly}(n) can be computed by a depth-44 syntactically multilinear (ΣΠΣΠ\Sigma\Pi\Sigma\Pi) circuit of size at most exp⁥(O(nlog⁥n))\exp\left({O\left(\sqrt{n\log n}\right)}\right). For degree d=ω(n/log⁥n)d = \omega(n/\log n), this improves upon the upper bound of exp⁥(O(dlog⁥n))\exp\left({O(\sqrt{d}\log n)}\right) obtained by Tavenas~\cite{T15} for general circuits, and is known to be asymptotically optimal in the exponent when d<nÏ”d < n^{\epsilon} for a small enough constant Ï”\epsilon. Our upper bound matches the lower bound of exp⁥(Ω(nlog⁥n))\exp\left({\Omega\left(\sqrt{n\log n}\right)}\right) proved by Raz and Yehudayoff~\cite{RY09}, and thus cannot be improved further in the exponent. Our results hold over all fields and also generalize to circuits of small individual degree. More generally, we show that an nn-variate polynomial computable by a syntactically multilinear circuit of size poly⁥(n)\operatorname{poly}(n) can be computed by a syntactically multilinear circuit of product-depth Δ\Delta of size at most exp⁥(O(Δ⋅(n/log⁥n)1/Δ⋅log⁥n))\exp\left(O\left(\Delta \cdot (n/\log n)^{1/\Delta} \cdot \log n\right)\right). It follows from the lower bounds of Raz and Yehudayoff (CC 2009) that in general, for constant Δ\Delta, the exponent in this upper bound is tight and cannot be improved to o((n/log⁥n)1/Δ⋅log⁥n)o\left(\left(n/\log n\right)^{1/\Delta}\cdot \log n\right)

    On Computing Multilinear Polynomials Using Multi-r-ic Depth Four Circuits

    Get PDF
    International audienceIn this paper, we are interested in understanding the complexity of computing multilinear polynomials using depth four circuits in which polynomial computed at every node has a bound on the individual degree of r (referred to as multi-r-ic circuits). The goal of this study is to make progress towards proving superpolynomial lower bounds for general depth four circuits computing multilinear polynomials, by proving better and better bounds as the value of r increases. Recently, Kayal, Saha and Tavenas (Theory of Computing, 2018) showed that any depth four arithmetic circuit of bounded individual degree r computing a multilinear polynomial on n^O(1) variables and degree d = o(n), must have size at least (n/r^1.1)^{\sqrt{d/r}} when r is o(d) and is strictly less than n^1/1.1. This bound however deteriorates with increasing r. It is a natural question to ask if we can prove a bound that does not deteriorate with increasing r or a bound that holds for a larger regime of r. We here prove a lower bound which does not deteriorate with r , however for a specific instance of d = d (n) but for a wider range of r. Formally, we show that there exists an explicit polynomial on n^{O(1)} variables and degree Θ(log^2(n)) such that any depth four circuit of bounded individual degree r < n^0.2 must have size at least exp(℩ (log^2 n)). This improvement is obtained by suitably adapting the complexity measure of Kayal et al. (Theory of Computing, 2018). This adaptation of the measure is inspired by the complexity measure used by Kayal et al. (SIAM J. Computing, 2017)

    Towards Optimal Depth-Reductions for Algebraic Formulas

    Get PDF
    Classical results of Brent, Kuck and Maruyama (IEEE Trans. Computers 1973) and Brent (JACM 1974) show that any algebraic formula of size s can be converted to one of depth O(log s) with only a polynomial blow-up in size. In this paper, we consider a fine-grained version of this result depending on the degree of the polynomial computed by the algebraic formula. Given a homogeneous algebraic formula of size s computing a polynomial P of degree d, we show that P can also be computed by an (unbounded fan-in) algebraic formula of depth O(log d) and size poly(s). Our proof shows that this result also holds in the highly restricted setting of monotone, non-commutative algebraic formulas. This improves on previous results in the regime when d is small (i.e., d = s^o(1)). In particular, for the setting of d = O(log s), along with a result of Raz (STOC 2010, JACM 2013), our result implies the same depth reduction even for inhomogeneous formulas. This is particularly interesting in light of recent algebraic formula lower bounds, which work precisely in this "low-degree" and "low-depth" setting. We also show that these results cannot be improved in the monotone setting, even for commutative formulas

    Circuit complexity, proof complexity, and polynomial identity testing

    Full text link
    We introduce a new algebraic proof system, which has tight connections to (algebraic) circuit complexity. In particular, we show that any super-polynomial lower bound on any Boolean tautology in our proof system implies that the permanent does not have polynomial-size algebraic circuits (VNP is not equal to VP). As a corollary to the proof, we also show that super-polynomial lower bounds on the number of lines in Polynomial Calculus proofs (as opposed to the usual measure of number of monomials) imply the Permanent versus Determinant Conjecture. Note that, prior to our work, there was no proof system for which lower bounds on an arbitrary tautology implied any computational lower bound. Our proof system helps clarify the relationships between previous algebraic proof systems, and begins to shed light on why proof complexity lower bounds for various proof systems have been so much harder than lower bounds on the corresponding circuit classes. In doing so, we highlight the importance of polynomial identity testing (PIT) for understanding proof complexity. More specifically, we introduce certain propositional axioms satisfied by any Boolean circuit computing PIT. We use these PIT axioms to shed light on AC^0[p]-Frege lower bounds, which have been open for nearly 30 years, with no satisfactory explanation as to their apparent difficulty. We show that either: a) Proving super-polynomial lower bounds on AC^0[p]-Frege implies VNP does not have polynomial-size circuits of depth d - a notoriously open question for d at least 4 - thus explaining the difficulty of lower bounds on AC^0[p]-Frege, or b) AC^0[p]-Frege cannot efficiently prove the depth d PIT axioms, and hence we have a lower bound on AC^0[p]-Frege. Using the algebraic structure of our proof system, we propose a novel way to extend techniques from algebraic circuit complexity to prove lower bounds in proof complexity

    Lower Bounds for Multilinear Order-Restricted ABPs

    Get PDF
    Proving super-polynomial lower bounds on the size of syntactic multilinear Algebraic Branching Programs (smABPs) computing an explicit polynomial is a challenging problem in Algebraic Complexity Theory. The order in which variables in {x_1,...,x_n} appear along any source to sink path in an smABP can be viewed as a permutation in S_n. In this article, we consider the following special classes of smABPs where the order of occurrence of variables along a source to sink path is restricted: 1) Strict circular-interval ABPs: For every sub-program the index set of variables occurring in it is contained in some circular interval of {1,..., n}. 2) L-ordered ABPs: There is a set of L permutations (orders) of variables such that every source to sink path in the smABP reads variables in one of these L orders, where L 0. We prove exponential (i.e., 2^{Omega(n^delta)}, delta>0) lower bounds on the size of above models computing an explicit multilinear 2n-variate polynomial in VP. As a main ingredient in our lower bounds, we show that any polynomial that can be computed by an smABP of size S, can be written as a sum of O(S) many multilinear polynomials where each summand is a product of two polynomials in at most 2n/3 variables, computable by smABPs. As a corollary, we show that any size S syntactic multilinear ABP can be transformed into a size S^{O(sqrt{n})} depth four syntactic multilinear Sigma Pi Sigma Pi circuit where the bottom Sigma gates compute polynomials on at most O(sqrt{n}) variables. Finally, we compare the above models with other standard models for computing multilinear polynomials

    Towards Optimal Depth-Reductions for Algebraic Formulas

    Full text link
    Classical results of Brent, Kuck and Maruyama (IEEE Trans. Computers 1973) and Brent (JACM 1974) show that any algebraic formula of size s can be converted to one of depth O(log s) with only a polynomial blow-up in size. In this paper, we consider a fine-grained version of this result depending on the degree of the polynomial computed by the algebraic formula. Given a homogeneous algebraic formula of size s computing a polynomial P of degree d, we show that P can also be computed by an (unbounded fan-in) algebraic formula of depth O(log d) and size poly(s). Our proof shows that this result also holds in the highly restricted setting of monotone, non-commutative algebraic formulas. This improves on previous results in the regime when d is small (i.e., d<<s). In particular, for the setting of d=O(log s), along with a result of Raz (STOC 2010, JACM 2013), our result implies the same depth reduction even for inhomogeneous formulas. This is particularly interesting in light of recent algebraic formula lower bounds, which work precisely in this ``low-degree" and ``low-depth" setting. We also show that these results cannot be improved in the monotone setting, even for commutative formulas

    Succinct Hitting Sets and Barriers to Proving Lower Bounds for Algebraic Circuits

    Get PDF
    We formalize a framework of algebraically natural lower bounds for algebraic circuits. Just as with the natural proofs notion of Razborov and Rudich (1997) for Boolean circuit lower bounds, our notion of algebraically natural lower bounds captures nearly all lower bound techniques known. However, unlike in the Boolean setting, there has been no concrete evidence demonstrating that this is a barrier to obtaining super-polynomial lower bounds for general algebraic circuits, as there is little understanding whether algebraic circuits are expressive enough to support “cryptography” secure against algebraic circuits. Following a similar result of Williams (2016) in the Boolean setting, we show that the existence of an algebraic natural proofs barrier is equivalent to the existence of succinct derandomization of the polynomial identity testing problem, that is, to the existence of a hitting set for the class of poly(N)-degree poly(N)-size circuits which consists of coefficient vectors of polynomials of polylog(N) degree with polylog(N)-size circuits. Further, we give an explicit universal construction showing that if such a succinct hitting set exists, then our universal construction suffices. Further, we assess the existing literature constructing hitting sets for restricted classes of algebraic circuits and observe that none of them are succinct as given. Yet, we show how to modify some of these constructions to obtain succinct hitting sets. This constitutes the first evidence supporting the existence of an algebraic natural proofs barrier. Our framework is similar to the Geometric Complexity Theory (GCT) program of Mulmuley and Sohoni (2001), except that here we emphasize constructiveness of the proofs while the GCT program emphasizes symmetry. Nevertheless, our succinct hitting sets have relevance to the GCT program as they imply lower bounds for the complexity of the defining equations of polynomials computed by small circuits. A conference version of this paper appeared in the Proceedings of the 49th Annual ACM Symposium on Theory of Computing (STOC 2017)

    Succinct Hitting Sets and Barriers to Proving Lower Bounds for Algebraic Circuits

    Get PDF
    We formalize a framework of algebraically natural lower bounds for algebraic circuits. Just as with the natural proofs notion of Razborov and Rudich (1997) for Boolean circuit lower bounds, our notion of algebraically natural lower bounds captures nearly all lower bound techniques known. However, unlike in the Boolean setting, there has been no concrete evidence demonstrating that this is a barrier to obtaining super-polynomial lower bounds for general algebraic circuits, as there is little understanding whether algebraic circuits are expressive enough to support “cryptography” secure against algebraic circuits. Following a similar result of Williams (2016) in the Boolean setting, we show that the existence of an algebraic natural proofs barrier is equivalent to the existence of succinct derandomization of the polynomial identity testing problem, that is, to the existence of a hitting set for the class of poly(N)-degree poly(N)-size circuits which consists of coefficient vectors of polynomials of polylog(N) degree with polylog(N)-size circuits. Further, we give an explicit universal construction showing that if such a succinct hitting set exists, then our universal construction suffices. Further, we assess the existing literature constructing hitting sets for restricted classes of algebraic circuits and observe that none of them are succinct as given. Yet, we show how to modify some of these constructions to obtain succinct hitting sets. This constitutes the first evidence supporting the existence of an algebraic natural proofs barrier. Our framework is similar to the Geometric Complexity Theory (GCT) program of Mulmuley and Sohoni (2001), except that here we emphasize constructiveness of the proofs while the GCT program emphasizes symmetry. Nevertheless, our succinct hitting sets have relevance to the GCT program as they imply lower bounds for the complexity of the defining equations of polynomials computed by small circuits. A conference version of this paper appeared in the Proceedings of the 49th Annual ACM Symposium on Theory of Computing (STOC 2017)
    • 

    corecore