26,683 research outputs found

    Robotic Wireless Sensor Networks

    Full text link
    In this chapter, we present a literature survey of an emerging, cutting-edge, and multi-disciplinary field of research at the intersection of Robotics and Wireless Sensor Networks (WSN) which we refer to as Robotic Wireless Sensor Networks (RWSN). We define a RWSN as an autonomous networked multi-robot system that aims to achieve certain sensing goals while meeting and maintaining certain communication performance requirements, through cooperative control, learning and adaptation. While both of the component areas, i.e., Robotics and WSN, are very well-known and well-explored, there exist a whole set of new opportunities and research directions at the intersection of these two fields which are relatively or even completely unexplored. One such example would be the use of a set of robotic routers to set up a temporary communication path between a sender and a receiver that uses the controlled mobility to the advantage of packet routing. We find that there exist only a limited number of articles to be directly categorized as RWSN related works whereas there exist a range of articles in the robotics and the WSN literature that are also relevant to this new field of research. To connect the dots, we first identify the core problems and research trends related to RWSN such as connectivity, localization, routing, and robust flow of information. Next, we classify the existing research on RWSN as well as the relevant state-of-the-arts from robotics and WSN community according to the problems and trends identified in the first step. Lastly, we analyze what is missing in the existing literature, and identify topics that require more research attention in the future

    A network-aware framework for energy-efficient data acquisition in wireless sensor networks

    Get PDF
    Wireless sensor networks enable users to monitor the physical world at an extremely high fidelity. In order to collect the data generated by these tiny-scale devices, the data management community has proposed the utilization of declarative data-acquisition frameworks. While these frameworks have facilitated the energy-efficient retrieval of data from the physical environment, they were agnostic of the underlying network topology and also did not support advanced query processing semantics. In this paper we present KSpot+, a distributed network-aware framework that optimizes network efficiency by combining three components: (i) the tree balancing module, which balances the workload of each sensor node by constructing efficient network topologies; (ii) the workload balancing module, which minimizes data reception inefficiencies by synchronizing the sensor network activity intervals; and (iii) the query processing module, which supports advanced query processing semantics. In order to validate the efficiency of our approach, we have developed a prototype implementation of KSpot+ in nesC and JAVA. In our experimental evaluation, we thoroughly assess the performance of KSpot+ using real datasets and show that KSpot+ provides significant energy reductions under a variety of conditions, thus significantly prolonging the longevity of a WSN

    Farm level optimal water management: Assistant for irrigation under Defecit (FLOW-AID)

    Get PDF
    Flow-aid is an on-going 6th Framework European project (2006-2009) with the objective to contribute to sustainable irrigated agriculture by developing an irrigation management system that can be used for crop production in cases with limited water supply and marginal water quality. The project integrates innovative sensor technologies into a decision support system, taking into consideration boundary conditions and constraints for a number of practical growing systems in the Mediterranean. It focuses on innovative, simple and affordable, hard- and software concepts for deficit irrigation; particularly a maintenance free tensiometer, a wireless and low-power sensor network; an expert system to assist annual farm zoning and crop planning in view of expected water availability and quality; and an irrigation scheduler for allocation of water for multiple plots at farm level. The system is being evaluated at four sites located in Italy, Turkey, Lebanon and Jordan. The sites are chosen in such a way that they differ in the type of constraints, irrigation structures, crop types, water supplies (availability of amount and quality), the local goals, and their complexity. This paper describes the overall concept and briefly the progress of the first year research

    SAMI: Service-Based Arbitrated Multi-Tier Infrastructure for Mobile Cloud Computing

    Get PDF
    Mobile Cloud Computing (MCC) is the state-ofthe- art mobile computing technology aims to alleviate resource poverty of mobile devices. Recently, several approaches and techniques have been proposed to augment mobile devices by leveraging cloud computing. However, long-WAN latency and trust are still two major issues in MCC that hinder its vision. In this paper, we analyze MCC and discuss its issues. We leverage Service Oriented Architecture (SOA) to propose an arbitrated multi-tier infrastructure model named SAMI for MCC. Our architecture consists of three major layers, namely SOA, arbitrator, and infrastructure. The main strength of this architecture is in its multi-tier infrastructure layer which leverages infrastructures from three main sources of Clouds, Mobile Network Operators (MNOs), and MNOs' authorized dealers. On top of the infrastructure layer, an arbitrator layer is designed to classify Services and allocate them the suitable resources based on several metrics such as resource requirement, latency and security. Utilizing SAMI facilitate development and deployment of service-based platform-neutral mobile applications.Comment: 6 full pages, accepted for publication in IEEE MobiCC'12 conference, MobiCC 2012:IEEE Workshop on Mobile Cloud Computing, Beijing, Chin
    corecore