7,673 research outputs found

    A Review on Biological Inspired Computation in Cryptology

    Get PDF
    Cryptology is a field that concerned with cryptography and cryptanalysis. Cryptography, which is a key technology in providing a secure transmission of information, is a study of designing strong cryptographic algorithms, while cryptanalysis is a study of breaking the cipher. Recently biological approaches provide inspiration in solving problems from various fields. This paper reviews major works in the application of biological inspired computational (BIC) paradigm in cryptology. The paper focuses on three BIC approaches, namely, genetic algorithm (GA), artificial neural network (ANN) and artificial immune system (AIS). The findings show that the research on applications of biological approaches in cryptology is minimal as compared to other fields. To date only ANN and GA have been used in cryptanalysis and design of cryptographic primitives and protocols. Based on similarities that AIS has with ANN and GA, this paper provides insights for potential application of AIS in cryptology for further research

    A New View on Worst-Case to Average-Case Reductions for NP Problems

    Full text link
    We study the result by Bogdanov and Trevisan (FOCS, 2003), who show that under reasonable assumptions, there is no non-adaptive worst-case to average-case reduction that bases the average-case hardness of an NP-problem on the worst-case complexity of an NP-complete problem. We replace the hiding and the heavy samples protocol in [BT03] by employing the histogram verification protocol of Haitner, Mahmoody and Xiao (CCC, 2010), which proves to be very useful in this context. Once the histogram is verified, our hiding protocol is directly public-coin, whereas the intuition behind the original protocol inherently relies on private coins

    A Game of Attribute Decomposition for Software Architecture Design

    Full text link
    Attribute-driven software architecture design aims to provide decision support by taking into account the quality attributes of softwares. A central question in this process is: What architecture design best fulfills the desirable software requirements? To answer this question, a system designer needs to make tradeoffs among several potentially conflicting quality attributes. Such decisions are normally ad-hoc and rely heavily on experiences. We propose a mathematical approach to tackle this problem. Game theory naturally provides the basic language: Players represent requirements, and strategies involve setting up coalitions among the players. In this way we propose a novel model, called decomposition game, for attribute-driven design. We present its solution concept based on the notion of cohesion and expansion-freedom and prove that a solution always exists. We then investigate the computational complexity of obtaining a solution. The game model and the algorithms may serve as a general framework for providing useful guidance for software architecture design. We present our results through running examples and a case study on a real-life software project.Comment: 23 pages, 5 figures, a shorter version to appear at 12th International Colloquium on Theoretical Aspects of Computing (ICTAC 2015

    Practical cryptographic strategies in the post-quantum era

    Full text link
    We review new frontiers in information security technologies in communications and distributed storage technologies with the use of classical, quantum, hybrid classical-quantum, and post-quantum cryptography. We analyze the current state-of-the-art, critical characteristics, development trends, and limitations of these techniques for application in enterprise information protection systems. An approach concerning the selection of practical encryption technologies for enterprises with branched communication networks is introduced.Comment: 5 pages, 2 figures; review pape

    Agents for educational games and simulations

    Get PDF
    This book consists mainly of revised papers that were presented at the Agents for Educational Games and Simulation (AEGS) workshop held on May 2, 2011, as part of the Autonomous Agents and MultiAgent Systems (AAMAS) conference in Taipei, Taiwan. The 12 full papers presented were carefully reviewed and selected from various submissions. The papers are organized topical sections on middleware applications, dialogues and learning, adaption and convergence, and agent applications

    Building Secure and Anonymous Communication Channel: Formal Model and its Prototype Implementation

    Full text link
    Various techniques need to be combined to realize anonymously authenticated communication. Cryptographic tools enable anonymous user authentication while anonymous communication protocols hide users' IP addresses from service providers. One simple approach for realizing anonymously authenticated communication is their simple combination, but this gives rise to another issue; how to build a secure channel. The current public key infrastructure cannot be used since the user's public key identifies the user. To cope with this issue, we propose a protocol that uses identity-based encryption for packet encryption without sacrificing anonymity, and group signature for anonymous user authentication. Communications in the protocol take place through proxy entities that conceal users' IP addresses from service providers. The underlying group signature is customized to meet our objective and improve its efficiency. We also introduce a proof-of-concept implementation to demonstrate the protocol's feasibility. We compare its performance to SSL communication and demonstrate its practicality, and conclude that the protocol realizes secure, anonymous, and authenticated communication between users and service providers with practical performance.Comment: This is a preprint version of our paper presented in SAC'14, March 24-28, 2014, Gyeongju, Korea. ACMSAC 201

    Provably Secure Cryptographic Constructions

    Get PDF
    corecore