334 research outputs found

    Towards delay-aware container-based Service Function Chaining in Fog Computing

    Get PDF
    Recently, the fifth-generation mobile network (5G) is getting significant attention. Empowered by Network Function Virtualization (NFV), 5G networks aim to support diverse services coming from different business verticals (e.g. Smart Cities, Automotive, etc). To fully leverage on NFV, services must be connected in a specific order forming a Service Function Chain (SFC). SFCs allow mobile operators to benefit from the high flexibility and low operational costs introduced by network softwarization. Additionally, Cloud computing is evolving towards a distributed paradigm called Fog Computing, which aims to provide a distributed cloud infrastructure by placing computational resources close to end-users. However, most SFC research only focuses on Multi-access Edge Computing (MEC) use cases where mobile operators aim to deploy services close to end-users. Bi-directional communication between Edges and Cloud are not considered in MEC, which in contrast is highly important in a Fog environment as in distributed anomaly detection services. Therefore, in this paper, we propose an SFC controller to optimize the placement of service chains in Fog environments, specifically tailored for Smart City use cases. Our approach has been validated on the Kubernetes platform, an open-source orchestrator for the automatic deployment of micro-services. Our SFC controller has been implemented as an extension to the scheduling features available in Kubernetes, enabling the efficient provisioning of container-based SFCs while optimizing resource allocation and reducing the end-to-end (E2E) latency. Results show that the proposed approach can lower the network latency up to 18% for the studied use case while conserving bandwidth when compared to the default scheduling mechanism

    Adaptive fog service placement for real-time topology changes in Kubernetes clusters

    No full text
    Recent trends have caused a shift from services deployed solely in monolithic data centers in the cloud to services deployed in the fog (e.g. roadside units for smart highways, support services for IoT devices). Simultaneously, the variety and number of IoT devices has grown rapidly, along with their reliance on cloud services. Additionally, many of these devices are now themselves capable of running containers, allowing them to execute some services previously deployed in the fog. The combination of IoT devices and fog computing has many advantages in terms of efficiency and user experience, but the scale, volatile topology and heterogeneous network conditions of the fog and the edge also present problems for service deployment scheduling. Cloud service scheduling often takes a wide array of parameters into account to calculate optimal solutions. However, the algorithms used are not generally capable of handling the scale and volatility of the fog. This paper presents a scheduling algorithm, named "Swirly", for large scale fog and edge networks, which is capable of adapting to changes in network conditions and connected devices. The algorithm details are presented and implemented as a service using the Kubernetes API. This implementation is validated and benchmarked, showing that a single threaded Swirly service is easily capable of managing service meshes for at least 300.000 devices in soft real-time

    Live demonstration of service function chaining allocation in Fog Computing

    Get PDF
    In recent years, cloud computing is evolving towards a distributed paradigm called Fog Computing, aiming to provide a distributed infrastructure by placing computational resources close to end-users. To fully leverage on Fog Computing, proper resource allocation is needed to cope with the demanding constraints introduced by IoT (e.g. low latency, high mobility). One of the main challenges that remain is Service Function Chaining (SFC). Services must be connected in a specific order forming an SFC allowing providers to benefit from the high flexibility and low operational costs introduced by network softwarization. In the demonstration, an SFC controller able to optimize the placement of service chains in Fogcloud environments will be presented. The SFC controller has been implemented on the Kubernetes platform, an open-source orchestrator for the automatic deployment of micro-services. Our approach allows Kubernetes to deploy micro-services based on up-to-date information on the current status of the network infrastructure. The demonstration will show how application developers could use our approach to set up service chains for their services. Then, performance outcomes of our SFC controller will be shown, especially in terms of container deployment times

    Edge/Fog Computing Technologies for IoT Infrastructure

    Get PDF
    The prevalence of smart devices and cloud computing has led to an explosion in the amount of data generated by IoT devices. Moreover, emerging IoT applications, such as augmented and virtual reality (AR/VR), intelligent transportation systems, and smart factories require ultra-low latency for data communication and processing. Fog/edge computing is a new computing paradigm where fully distributed fog/edge nodes located nearby end devices provide computing resources. By analyzing, filtering, and processing at local fog/edge resources instead of transferring tremendous data to the centralized cloud servers, fog/edge computing can reduce the processing delay and network traffic significantly. With these advantages, fog/edge computing is expected to be one of the key enabling technologies for building the IoT infrastructure. Aiming to explore the recent research and development on fog/edge computing technologies for building an IoT infrastructure, this book collected 10 articles. The selected articles cover diverse topics such as resource management, service provisioning, task offloading and scheduling, container orchestration, and security on edge/fog computing infrastructure, which can help to grasp recent trends, as well as state-of-the-art algorithms of fog/edge computing technologies

    Orchestration in the Cloud-to-Things Compute Continuum: Taxonomy, Survey and Future Directions

    Full text link
    IoT systems are becoming an essential part of our environment. Smart cities, smart manufacturing, augmented reality, and self-driving cars are just some examples of the wide range of domains, where the applicability of such systems has been increasing rapidly. These IoT use cases often require simultaneous access to geographically distributed arrays of sensors, and heterogeneous remote, local as well as multi-cloud computational resources. This gives birth to the extended Cloud-to-Things computing paradigm. The emergence of this new paradigm raised the quintessential need to extend the orchestration requirements i.e., the automated deployment and run-time management) of applications from the centralised cloud-only environment to the entire spectrum of resources in the Cloud-to-Things continuum. In order to cope with this requirement, in the last few years, there has been a lot of attention to the development of orchestration systems in both industry and academic environments. This paper is an attempt to gather the research conducted in the orchestration for the Cloud-to-Things continuum landscape and to propose a detailed taxonomy, which is then used to critically review the landscape of existing research work. We finally discuss the key challenges that require further attention and also present a conceptual framework based on the conducted analysis.Comment: Journal of Cloud Computing Pages: 2

    Context-Aware Kubernetes Scheduler for Edge-native Applications on 5G

    Get PDF
    This paper is an extension of work originally presented in SoftCOM 2019 [1]. The novelty of this work reside in its focused improvement of our scheduling algorithm towards its usage on a real 5G infrastructure. Industrial IoT applications are often designed to run in a distributed way on the devices and controller computers with strict service requirements for the nodes and the links between them. 5G, especially in concomitance with Edge Computing, will provide the desired level of connectivity for these setups and it will permit to host application run-time components in edge clouds. However, allocation of the edge cloud resources for Industrial IoT (IIoT) applications, is still commonly solved by rudimentary scheduling techniques (i.e. simple strategies based on CPU usage and device readiness, employing very few dynamic information). Orchestrators inherited from the cloud computing, like Kubernetes, are not satisfying to the requirements of the aforementioned applications and are not optimized for the diversity of devices which are often also limited in capacity. This design is especially slow in reacting to the environmental changes. In such circumstances, in order to provide a proper solution using these tools, we propose to take the physical, operational and network parameters (thus the full context of the IIoT application) into consideration, along with the software states and orchestrate the applications dynamically

    Hybrid clouds for data-Intensive, 5G-Enabled IoT applications: an overview, key issues and relevant architecture

    Get PDF
    Hybrid cloud multi-access edge computing (MEC) deployments have been proposed as efficient means to support Internet of Things (IoT) applications, relying on a plethora of nodes and data. In this paper, an overview on the area of hybrid clouds considering relevant research areas is given, providing technologies and mechanisms for the formation of such MEC deployments, as well as emphasizing several key issues that should be tackled by novel approaches, especially under the 5G paradigm. Furthermore, a decentralized hybrid cloud MEC architecture, resulting in a Platform-as-a-Service (PaaS) is proposed and its main building blocks and layers are thoroughly described. Aiming to offer a broad perspective on the business potential of such a platform, the stakeholder ecosystem is also analyzed. Finally, two use cases in the context of smart cities and mobile health are presented, aimed at showing how the proposed PaaS enables the development of respective IoT applications.Peer ReviewedPostprint (published version
    • …
    corecore