314 research outputs found

    uC: Ubiquitous Collaboration Platform for Multimodal Team Interaction Support

    Get PDF
    A human-centered computing platform that improves teamwork and transforms the “human- computer interaction experience” for distributed teams is presented. This Ubiquitous Collaboration, or uC (“you see”), platform\u27s objective is to transform distributed teamwork (i.e., work occurring when teams of workers and learners are geographically dispersed and often interacting at different times). It achieves this goal through a multimodal team interaction interface realized through a reconfigurable open architecture. The approach taken is to integrate: (1) an intuitive speech- and video-centric multi-modal interface to augment more conventional methods (e.g., mouse, stylus and touch), (2) an open and reconfigurable architecture supporting information gathering, and (3) a machine intelligent approach to analysis and management of heterogeneous live and stored sensor data to support collaboration. The system will transform how teams of people interact with computers by drawing on both the virtual and physical environment

    Review: Development and technical design of tangible user interfaces in wide-field areas of application

    Get PDF
    A tangible user interface or TUI connects physical objects and digital interfaces. It is more interactive and interesting for users than a classic graphic user interface. This article presents a descriptive overview of TUI's real-world applications sorted into ten main application areas-teaching of traditional subjects, medicine and psychology, programming, database development, music and arts, modeling of 3D objects, modeling in architecture, literature and storytelling, adjustable TUI solutions, and commercial TUI smart toys. The paper focuses on TUI's technical solutions and a description of technical constructions that influences the applicability of TUIs in the real world. Based on the review, the technical concept was divided into two main approaches: the sensory technical concept and technology based on a computer vision algorithm. The sensory technical concept is processed to use wireless technology, sensors, and feedback possibilities in TUI applications. The image processing approach is processed to a marker and markerless approach for object recognition, the use of cameras, and the use of computer vision platforms for TUI applications.Web of Science2113art. no. 425

    A Mixed Reality Approach to 3D Interactive Prototyping for Participatory Design of Ambient Intelligence

    Get PDF
    Ambient Intelligence (AmI in short) is a multi-disciplinary approach aimed at enriching physical environments with a network of distributed devices in order to support humans in achieving their everyday goals. However, in current research and development, AmI is still largely considered within the engineering domain bearing undeveloped relationship with architecture. The fact that architecture design substantially aims to address the requirements of supporting people in carrying out their everyday life activities, tasks and practices with spatial strategies. These are common to the AmI’s objectives and purposes, and we aim at considering the possibilities or even necessities of investigating the potential design approach accessible to an architectural context. For end users, AmI is a new type of service. Designing and evaluating the AmI experience before resources are spent on designing the processes and technology needed to eventually run the service can save large amounts of time and money. Therefore, it is essential to create an environment in which designers can involve real people in trying out the service design proposals as early as possible in the design process. Existing cases related to stakeholder engaged design of AmI have primarily focused on engineering implementation and generally only present final outcome to stakeholders for user evaluation. Researchers have been able to build AmI prototypes for design communication. However, most of these prototypes are typically built without the involvement of stakeholders and architects in their conceptual design stage. Using concepts solely designed by engineers may not be user centric and even contain safety risks. The key research question of this thesis is: “How can Ambient Intelligence be designed through a participatory process that involves stakeholders and prospective users?" The thesis consists of the following five components: 1) Identification of a novel participatory design process for modelling AmI scenarios; 2) Identification of the requirements to support prototyping of AmI design, resulting in a conceptual framework that both "lowers the floor" (i.e. making it easier for designers to build the AmI prototypes) and "raises the ceiling" (i.e. increasing the ability of stakeholders and end users to participate in the design process deeply); i 3) Prototyping an experimental Mixed Reality Modelling (MRM in short) platform to facilitate the participatory design of AmI that supports the requirements, design process, and scenarios prototyping; 4) Case study of applying MRM platform to participatory design of a Smart Laser Cutting Workshop(LCW in short) which used to evaluate the proposed MRM based AmI design approach. The result of the research shows that the MRM based participatory design approach is able to support the design of AmI effectively
    • …
    corecore