332 research outputs found

    DYVERSE: DYnamic VERtical Scaling in Multi-tenant Edge Environments

    Full text link
    Multi-tenancy in resource-constrained environments is a key challenge in Edge computing. In this paper, we develop 'DYVERSE: DYnamic VERtical Scaling in Edge' environments, which is the first light-weight and dynamic vertical scaling mechanism for managing resources allocated to applications for facilitating multi-tenancy in Edge environments. To enable dynamic vertical scaling, one static and three dynamic priority management approaches that are workload-aware, community-aware and system-aware, respectively are proposed. This research advocates that dynamic vertical scaling and priority management approaches reduce Service Level Objective (SLO) violation rates. An online-game and a face detection workload in a Cloud-Edge test-bed are used to validate the research. The merits of DYVERSE is that there is only a sub-second overhead per Edge server when 32 Edge servers are deployed on a single Edge node. When compared to executing applications on the Edge servers without dynamic vertical scaling, static priorities and dynamic priorities reduce SLO violation rates of requests by up to 4% and 12% for the online game, respectively, and in both cases 6% for the face detection workload. Moreover, for both workloads, the system-aware dynamic vertical scaling method effectively reduces the latency of non-violated requests, when compared to other methods

    CloudScope: diagnosing and managing performance interference in multi-tenant clouds

    Get PDF
    © 2015 IEEE.Virtual machine consolidation is attractive in cloud computing platforms for several reasons including reduced infrastructure costs, lower energy consumption and ease of management. However, the interference between co-resident workloads caused by virtualization can violate the service level objectives (SLOs) that the cloud platform guarantees. Existing solutions to minimize interference between virtual machines (VMs) are mostly based on comprehensive micro-benchmarks or online training which makes them computationally intensive. In this paper, we present CloudScope, a system for diagnosing interference for multi-tenant cloud systems in a lightweight way. CloudScope employs a discrete-time Markov Chain model for the online prediction of performance interference of co-resident VMs. It uses the results to optimally (re)assign VMs to physical machines and to optimize the hypervisor configuration, e.g. the CPU share it can use, for different workloads. We have implemented CloudScope on top of the Xen hypervisor and conducted experiments using a set of CPU, disk, and network intensive workloads and a real system (MapReduce). Our results show that CloudScope interference prediction achieves an average error of 9%. The interference-aware scheduler improves VM performance by up to 10% compared to the default scheduler. In addition, the hypervisor reconfiguration can improve network throughput by up to 30%

    I/O Schedulers for Proportionality and Stability on Flash-Based SSDs in Multi-Tenant Environments

    Get PDF
    The use of flash based Solid State Drives (SSDs) has expanded rapidly into the cloud computing environment. In cloud computing, ensuring the service level objective (SLO) of each server is the major criterion in designing a system. In particular, eliminating performance interference among virtual machines (VMs) on shared storage is a key challenge. However, studies on SSD performance to guarantee SLO in such environments are limited. In this paper, we present analysis of I/O behavior for a shared SSD as storage in terms of proportionality and stability. We show that performance SLOs of SSD based storage systems being shared by VMs or tasks are not satisfactory. We present and analyze the reasons behind the unexpected behavior through examining the components of SSDs such as channels, DRAM buffer, and Native Command Queuing (NCQ). We introduce two novel SSD-aware host level I/O schedulers on Linux, called A & x002B;CFQ and H & x002B;BFQ, based on our analysis and findings. Through experiments on Linux, we analyze I/O proportionality and stability in multi-tenant environments. In addition, through experiments using real workloads, we analyze the performance interference between workloads on a shared SSD. We then show that the proposed I/O schedulers almost eliminate the interference effect seen in CFQ and BFQ, while still providing I/O proportionality and stability for various I/O weighted scenarios

    Fog Computing: A Taxonomy, Survey and Future Directions

    Full text link
    In recent years, the number of Internet of Things (IoT) devices/sensors has increased to a great extent. To support the computational demand of real-time latency-sensitive applications of largely geo-distributed IoT devices/sensors, a new computing paradigm named "Fog computing" has been introduced. Generally, Fog computing resides closer to the IoT devices/sensors and extends the Cloud-based computing, storage and networking facilities. In this chapter, we comprehensively analyse the challenges in Fogs acting as an intermediate layer between IoT devices/ sensors and Cloud datacentres and review the current developments in this field. We present a taxonomy of Fog computing according to the identified challenges and its key features.We also map the existing works to the taxonomy in order to identify current research gaps in the area of Fog computing. Moreover, based on the observations, we propose future directions for research

    Towards Deadline Guaranteed Cloud Storage Services

    Get PDF
    More and more organizations move their data and workload to commercial cloud storage systems. However, the multiplexing and sharing of the resources in a cloud storage system present unpredictable data access latency to tenants, which may make online data-intensive applications unable to satisfy their deadline requirements. Thus, it is important for cloud storage systems to provide deadline guaranteed services. In this paper, to meet a current form of service level objective (SLO) that constrains the percentage of each tenant\u27s data access requests failing to meet its required deadline below a given threshold, we build a mathematical model to derive the upper bound of acceptable request arrival rate on each server. We then propose a Deadline Guaranteed storage service (called DGCloud) that incorporates three algorithms. Its deadline-aware load balancing scheme redirects requests and creates replicas to release the excess load of each server beyond the derived upper bound. Its workload consolidation algorithm tries to maximally reduce servers while still satisfying the SLO to maximize the resource utilization. Its data placement optimization algorithm re-schedules the data placement to minimize the transmission cost of data replication. Our trace-driven experiments in simulation and Amazon EC2 show the higher performance of DGCloud compared with previous methods in terms of deadline guarantees and system resource utilization, and the effectiveness of its individual algorithms
    corecore