1,854 research outputs found

    Business Case and Technology Analysis for 5G Low Latency Applications

    Get PDF
    A large number of new consumer and industrial applications are likely to change the classic operator's business models and provide a wide range of new markets to enter. This article analyses the most relevant 5G use cases that require ultra-low latency, from both technical and business perspectives. Low latency services pose challenging requirements to the network, and to fulfill them operators need to invest in costly changes in their network. In this sense, it is not clear whether such investments are going to be amortized with these new business models. In light of this, specific applications and requirements are described and the potential market benefits for operators are analysed. Conclusions show that operators have clear opportunities to add value and position themselves strongly with the increasing number of services to be provided by 5G.Comment: 18 pages, 5 figure

    Collaborative virtual reality platform for visualizing space data and mission planning

    Get PDF
    This paper presents the system architecture of a collaborative virtual environment in which distributed multidisciplinary teams involved in space exploration activities come together and explore areas of scientific interest of a planet for future missions. The aim is to reduce the current challenges of distributed scientific and engineering meetings that prevent the exploitation of their collaborative potential, as, at present, expertise, tools and datasets are fragmented. This paper investigates the functional characteristics of a software framework that addresses these challenges following the design science research methodology in the context of the space industry and research. An implementation of the proposed architecture and a validation process with end users, based on the execution of different use cases, are described. These use cases cover relevant aspects of real science analysis and operation, including planetary data visualization, as the system aims at being used in future European missions. This validation suggests that the system has the potential to enhance the way space scientists will conduct space science research in the future

    Remote Real-Time Collaboration Platform enabled by the Capture, Digitisation and Transfer of Human-Workpiece Interactions

    Get PDF
    In this highly globalised manufacturing ecosystem, product design and verification activities, production and inspection processes, and technical support services are spread across global supply chains and customer networks. Therefore, a platform for global teams to collaborate with each other in real-time to perform complex tasks is highly desirable. This work investigates the design and development of a remote real-time collaboration platform by using human motion capture technology powered by infrared light based depth imaging sensors borrowed from the gaming industry. The unique functionality of the proposed platform is the sharing of physical contexts during a collaboration session by not only exchanging human actions but also the effects of those actions on the task environment. This enables teams to remotely work on a common task problem at the same time and also get immediate feedback from each other which is vital for collaborative design, inspection and verifications tasks in the factories of the future

    Virtual reality in the service of user participation in architecture

    Get PDF
    The issue of user participation in the processes of building and urban design is enjoying renewed attention following its relative neglect over the last 20 years due, in large measure, to significant advances in emerging information technologies, particularly multimedia, virtual reality and internet technologies. This paper re-established the theoretical framework for participatory design evolved in the late sixties and early seventies as part of the movement towards a more explicit design methodology and attempts an explanation of why the concept failed to gain commitment from the architectural and urban design professionals. The paper then gives an account of two significant developments in the evolution of the application of information technologies with which the authors have been engaged. These are: i. a responsive and interactive interface to wholly immersive and realistic virtual reality representations of proposed buildings and urban neighbourhoods. ii. an intuitive and platform-independent VR modelling environment allowing collaborative evolution of the scheme from within the virtual world. The impact of these IT developments is demonstrated in the context of the design of a leisure facility for a community of users with physical impairment

    Multi-Stream Management for Supporting Multi-Party 3D Tele-Immersive Environments

    Get PDF
    Three-dimensional tele-immersive (3DTI) environments have great potential to promote collaborative work among geographically distributed participants. However, extensive application of 3DTI environments is still hindered by problems pertaining to scalability, manageability and reliance of special-purpose components. Thus, one critical question is how to organize the acquisition, transmission and display of large volume real-time 3D visual data over commercially available computing and networking infrastructures so that .everybody. would be able to install and enjoy 3DTI environments for high quality tele-collaboration. In the thesis, we explore the design space from the angle of multi-stream Quality-of-Service (QoS) management to support multi-party 3DTI communication. In 3DTI environments, multiple correlated 3D video streams are deployed to provide a comprehensive representation of the physical scene. Traditional QoS approach in 2D and single-stream scenario has become inadequate. On the other hand, the existence of multiple streams provides unique opportunity for QoS provisioning. We propose an innovative cross-layer hierarchical and distributed multi-stream management middleware framework for QoS provisioning to fully enable multi-party 3DTI communication over general delivery infrastructure. The major contributions are as follows. First, we introduce the view model for representing the user interest in the application layer. The design revolves around the concept of view-aware multi-stream coordination, which leverages the central role of view semantics in 3D video systems. Second, in the stream differentiation layer we present the design of view to stream mapping, where a subset of relevant streams are selected based on the relative importance of each stream to the current view. Conventional streaming controllers focus on a fixed set of streams specified by the application. Different from all the others, in our management framework the application layer only specifies the view information while the underlying controller dynamically determines the set of streams to be managed. Third, in the stream coordination layer we present two designs applicable in different situations. In the case of end-to-end 3DTI communication, a learning-based controller is embedded which provides bandwidth allocation for relevant streams. In the case of multi-party 3DTI communication, we propose a novel ViewCast protocol to coordinate the multi-stream content dissemination upon an end-system overlay network

    Efficient 3D Reconstruction, Streaming and Visualization of Static and Dynamic Scene Parts for Multi-client Live-telepresence in Large-scale Environments

    Full text link
    Despite the impressive progress of telepresence systems for room-scale scenes with static and dynamic scene entities, expanding their capabilities to scenarios with larger dynamic environments beyond a fixed size of a few square-meters remains challenging. In this paper, we aim at sharing 3D live-telepresence experiences in large-scale environments beyond room scale with both static and dynamic scene entities at practical bandwidth requirements only based on light-weight scene capture with a single moving consumer-grade RGB-D camera. To this end, we present a system which is built upon a novel hybrid volumetric scene representation in terms of the combination of a voxel-based scene representation for the static contents, that not only stores the reconstructed surface geometry but also contains information about the object semantics as well as their accumulated dynamic movement over time, and a point-cloud-based representation for dynamic scene parts, where the respective separation from static parts is achieved based on semantic and instance information extracted for the input frames. With an independent yet simultaneous streaming of both static and dynamic content, where we seamlessly integrate potentially moving but currently static scene entities in the static model until they are becoming dynamic again, as well as the fusion of static and dynamic data at the remote client, our system is able to achieve VR-based live-telepresence at close to real-time rates. Our evaluation demonstrates the potential of our novel approach in terms of visual quality, performance, and ablation studies regarding involved design choices

    Enabling geometry-based 3-D tele-immersion with fast mesh compression and linear rateless coding

    Get PDF
    3-D tele-immersion (3DTI) enables participants in remote locations to share, in real time, an activity. It offers users interactive and immersive experiences, but it challenges current media-streaming solutions. Work in the past has mainly focused on the efficient delivery of image-based 3-D videos and on realistic rendering and reconstruction of geometry-based 3-D objects. The contribution of this paper is a real-time streaming component for 3DTI with dynamic reconstructed geometry. This component includes both a novel fast compression method and a rateless packet protection scheme specifically designed towards the requirements imposed by real time transmission of live-reconstructed mesh geometry. Tests on a large dataset show an encoding speed-up up to ten times at comparable compression ratio and quality, when compared with the high-end MPEG-4 SC3DMC mesh encoders. The implemented rateless code ensures complete packet loss protection of the triangle mesh object and a delivery delay within interactive bounds. Contrary to most linear fountain codes, the designed codec enables real-time progressive decoding allowing partial decoding each time a packet is received. This approach is compared with transmission over TCP in packet loss rates and latencies, typical in managed WAN and MAN networks, and heavily outperforms it in terms of end-to-end delay. The streaming component has been integrated into a larger 3DTI environment that includes state of the art 3-D reconstruction and rendering modules. This resulted in a prototype that can capture, compress transmit, and render triangle mesh geometry in real-time in realistic internet conditions as shown in experiments. Compared with alternative methods, lower interactive end-to-end delay and frame rates over three times higher are achieved
    corecore