10,741 research outputs found

    Multi-Lane Perception Using Feature Fusion Based on GraphSLAM

    Full text link
    An extensive, precise and robust recognition and modeling of the environment is a key factor for next generations of Advanced Driver Assistance Systems and development of autonomous vehicles. In this paper, a real-time approach for the perception of multiple lanes on highways is proposed. Lane markings detected by camera systems and observations of other traffic participants provide the input data for the algorithm. The information is accumulated and fused using GraphSLAM and the result constitutes the basis for a multilane clothoid model. To allow incorporation of additional information sources, input data is processed in a generic format. Evaluation of the method is performed by comparing real data, collected with an experimental vehicle on highways, to a ground truth map. The results show that ego and adjacent lanes are robustly detected with high quality up to a distance of 120 m. In comparison to serial lane detection, an increase in the detection range of the ego lane and a continuous perception of neighboring lanes is achieved. The method can potentially be utilized for the longitudinal and lateral control of self-driving vehicles

    Human Motion Trajectory Prediction: A Survey

    Full text link
    With growing numbers of intelligent autonomous systems in human environments, the ability of such systems to perceive, understand and anticipate human behavior becomes increasingly important. Specifically, predicting future positions of dynamic agents and planning considering such predictions are key tasks for self-driving vehicles, service robots and advanced surveillance systems. This paper provides a survey of human motion trajectory prediction. We review, analyze and structure a large selection of work from different communities and propose a taxonomy that categorizes existing methods based on the motion modeling approach and level of contextual information used. We provide an overview of the existing datasets and performance metrics. We discuss limitations of the state of the art and outline directions for further research.Comment: Submitted to the International Journal of Robotics Research (IJRR), 37 page

    Predictive Maneuver Planning and Control of an Autonomous Vehicle in Multi-Vehicle Traffic with Observation Uncertainty

    Get PDF
    Autonomous vehicle technology is a promising development for improving the safety, efficiency and environmental impact of on-road transportation systems. However, the task of guiding an autonomous vehicle by rapidly and systematically accommodating the plethora of changing constraints, e.g. of avoiding multiple stationary and moving obstacles, obeying traffic rules, signals and so on as well as the uncertain state observation due to sensor imperfections, remains a major challenge. This dissertation attempts to address this challenge via designing a robust and efficient predictive motion planning framework that can generate the appropriate vehicle maneuvers (selecting and tracking specific lanes, and related speed references) as well as the constituent motion trajectories while considering the differential vehicle kinematics of the controlled vehicle and other constraints of operating in public traffic. The main framework combines a finite state machine (FSM)-based maneuver decision module with a model predictive control (MPC)-based trajectory planner. Based on the prediction of the traffic environment, reference speeds are assigned to each lane in accordance with the detection of objects during measurement update. The lane selection decisions themselves are then incorporated within the MPC optimization. The on-line maneuver/motion planning effort for autonomous vehicles in public traffic is a non-convex problem due to the multiple collision avoidance constraints with overlapping areas, lane boundaries, and nonlinear vehicle-road dynamics constraints. This dissertation proposes and derives some remedies for these challenges within the planning framework to improve the feasibility and optimality of the solution. Specifically, it introduces vehicle grouping notions and derives conservative and smooth algebraic models to describe the overlapped space of several individual infeasible spaces and help prevent the optimization from falling into undesired local minima. Furthermore, in certain situations, a forced objective selection strategy is needed and adopted to help the optimization jump out of local minima. Furthermore, the dissertation considers stochastic uncertainties prevalent in dynamic and complex traffic and incorporate them with in the predictive planning and control framework. To this end, Bayesian filters are implemented to estimate the uncertainties in object motions and then propagate them into the prediction horizon. Then, a pair-wise probabilistic collision condition is defined for objects with non-negligible geometrical shape/sizes and computationally efficient and conservative forms are derived to efficiently and analytically approximate the involved multi-variate integrals. The probabilistic collision evaluation is then applied within a vehicle grouping algorithms to cluster the object vehicles with closeness in positions and speeds and eventually within the stochastic predictive maneuver planner framework to tighten the chanced-constraints given a deterministic confidence margin. It is argued that these steps make the planning problem tractable for real-time implementation on autonomously controlled vehicles

    Checklist to Transparently Define Test Oracles for TP, FP, and FN Objects in Automated Driving

    Full text link
    Popular test oracles for the perception subsystem of driving automation systems identify true-positive (TP), false-positive (FP), and false-negative (FN) objects. Oracle transparency is needed for comparing test results and for safety cases. To date, there exists a common notion of TPs, FPs, and FNs in the field, but apparently no published way to comprehensively define their oracles. Therefore, this paper provides a checklist of functional aspects and implementation details that affect the oracle behavior. Besides labeling policies of the test set, we cover fields of view, occlusion handling, safety-relevant areas, matching criteria, temporal and probabilistic issues, and further aspects. Even though our checklist can hardly be formalized, it can help practitioners maximize the transparency of their oracles, which, in turn, makes statements on object perception more reliable and comparable.Comment: 8 pages, 3 figure

    Scalable Approach to Uncertainty Quantification and Robust Design of Interconnected Dynamical Systems

    Full text link
    Development of robust dynamical systems and networks such as autonomous aircraft systems capable of accomplishing complex missions faces challenges due to the dynamically evolving uncertainties coming from model uncertainties, necessity to operate in a hostile cluttered urban environment, and the distributed and dynamic nature of the communication and computation resources. Model-based robust design is difficult because of the complexity of the hybrid dynamic models including continuous vehicle dynamics, the discrete models of computations and communications, and the size of the problem. We will overview recent advances in methodology and tools to model, analyze, and design robust autonomous aerospace systems operating in uncertain environment, with stress on efficient uncertainty quantification and robust design using the case studies of the mission including model-based target tracking and search, and trajectory planning in uncertain urban environment. To show that the methodology is generally applicable to uncertain dynamical systems, we will also show examples of application of the new methods to efficient uncertainty quantification of energy usage in buildings, and stability assessment of interconnected power networks

    A featureless approach for object detection and tracking in dynamic environments

    Get PDF
    One of the challenging problems in mobile robotics is mapping a dynamic environment for navigating robots. In order to disambiguate multiple moving obstacles, state-of-art techniques often solve some form of dynamic SLAM (Simultaneous Localization and Mapping) problem. Unfortunately, their higher computational complexity press the need for simpler and more efficient approaches suitable for real-time embedded systems. In this paper, we present a ROS-based efficient algorithm for constructing dynamic maps, which exploits the spatial-temporal locality for detecting and tracking moving objects without relying on prior knowledge of their geometrical features. A two-prong contribution of this work is as follows: first, an efficient scheme for decoding sensory data into an estimated time-varying object boundary that ultimately decides its orientation and trajectory based on the iteratively updated robot Field of View (FoV); second, lower time-complexity of updating the dynamic environment through manipulating spatial-temporal locality available in the object motion profile. Unlike existing approaches, the snapshots of the environment remain constant in the number of moving objects. We validate the efficacy of our algorithm on both V-Rep simulations and real-life experiments with a wide array of dynamic environments. We show that the algorithm accurately detects and tracks objects with a high probability as long as sensor noise is low and the speed of moving objects remains within acceptable limits
    • …
    corecore