10,370 research outputs found

    N-Person cake-cutting: there may be no perfect division

    Get PDF
    A cake is a metaphor for a heterogeneous, divisible good, such as land. A perfect division of cake is efficient (also called Pareto-optimal), envy-free, and equitable. We give an example of a cake in which it is impossible to divide it among three players such that these three properties are satisfied, however many cuts are made. It turns out that two of the three properties can be satisfied by a 3-cut and a 4-cut division, which raises the question of whether the 3-cut division, which is not efficient, or the 4-cut division, which is not envy-free, is more desirable (a 2-cut division can at best satisfy either envy-freeness or equitability but not both). We prove that no perfect division exists for an extension of the example for three or more players.Cake-cutting; fair division; efficiency; envy-freeness; equitability; heterogeneous good

    An Algorithmic Framework for Strategic Fair Division

    Full text link
    We study the paradigmatic fair division problem of allocating a divisible good among agents with heterogeneous preferences, commonly known as cake cutting. Classical cake cutting protocols are susceptible to manipulation. Do their strategic outcomes still guarantee fairness? To address this question we adopt a novel algorithmic approach, by designing a concrete computational framework for fair division---the class of Generalized Cut and Choose (GCC) protocols}---and reasoning about the game-theoretic properties of algorithms that operate in this model. The class of GCC protocols includes the most important discrete cake cutting protocols, and turns out to be compatible with the study of fair division among strategic agents. In particular, GCC protocols are guaranteed to have approximate subgame perfect Nash equilibria, or even exact equilibria if the protocol's tie-breaking rule is flexible. We further observe that the (approximate) equilibria of proportional GCC protocols---which guarantee each of the nn agents a 1/n1/n-fraction of the cake---must be (approximately) proportional. Finally, we design a protocol in this framework with the property that its Nash equilibrium allocations coincide with the set of (contiguous) envy-free allocations

    Redividing the Cake

    Full text link
    A heterogeneous resource, such as a land-estate, is already divided among several agents in an unfair way. It should be re-divided among the agents in a way that balances fairness with ownership rights. We present re-division protocols that attain various trade-off points between fairness and ownership rights, in various settings differing in the geometric constraints on the allotments: (a) no geometric constraints; (b) connectivity --- the cake is a one-dimensional interval and each piece must be a contiguous interval; (c) rectangularity --- the cake is a two-dimensional rectangle or rectilinear polygon and the pieces should be rectangles; (d) convexity --- the cake is a two-dimensional convex polygon and the pieces should be convex. Our re-division protocols have implications on another problem: the price-of-fairness --- the loss of social welfare caused by fairness requirements. Each protocol implies an upper bound on the price-of-fairness with the respective geometric constraints.Comment: Extended IJCAI 2018 version. Previous name: "How to Re-Divide a Cake Fairly

    Two-person cake-cutting: the optimal number of cuts

    Get PDF
    A cake is a metaphor for a heterogeneous, divisible good. When two players divide such a good, there is always a perfect division—one that is efficient (Pareto-optimal), envy-free, and equitable—which can be effected with a finite number of cuts under certain mild conditions; this is not always the case when there are more than two players (Brams, Jones, and Klamler, 2011b). We not only establish the existence of such a division but also provide an algorithm for determining where and how many cuts must be made, relating it to an algorithm, “Adjusted Winner” (Brams and Taylor, 1996, 1999), that yields a perfect division of multiple homogenous goods.Cake-cutting; fair division; envy-freeness; adjusted winner; heterogeneous good

    Monotonicity and Competitive Equilibrium in Cake-cutting

    Full text link
    We study the monotonicity properties of solutions in the classic problem of fair cake-cutting --- dividing a heterogeneous resource among agents with different preferences. Resource- and population-monotonicity relate to scenarios where the cake, or the number of participants who divide the cake, changes. It is required that the utility of all participants change in the same direction: either all of them are better-off (if there is more to share or fewer to share among) or all are worse-off (if there is less to share or more to share among). We formally introduce these concepts to the cake-cutting problem and examine whether they are satisfied by various common division rules. We prove that the Nash-optimal rule, which maximizes the product of utilities, is resource-monotonic and population-monotonic, in addition to being Pareto-optimal, envy-free and satisfying a strong competitive-equilibrium condition. Moreover, we prove that it is the only rule among a natural family of welfare-maximizing rules that is both proportional and resource-monotonic.Comment: Revised versio
    corecore