117 research outputs found

    A Domain Specific Language Based Approach for Generating Deadlock-Free Parallel Load Scheduling Protocols for Distributed Systems

    Get PDF
    In this dissertation, the concept of using domain specific language to develop errorree parallel asynchronous load scheduling protocols for distributed systems is studied. The motivation of this study is rooted in addressing the high cost of verifying parallel asynchronous load scheduling protocols. Asynchronous parallel applications are prone to subtle bugs such as deadlocks and race conditions due to the possibility of non-determinism. Due to this non-deterministic behavior, traditional testing methods are less effective at finding software faults. One approach that can eliminate these software bugs is to employ model checking techniques that can verify that non-determinism will not cause software faults in parallel programs. Unfortunately, model checking requires the development of a verification model of a program in a separate verification language which can be an error-prone procedure and may not properly represent the semantics of the original system. The model checking approach can provide true positive result if the semantics of an implementation code and a verification model is represented under a single framework such that the verification model closely represents the implementation and the automation of a verification process is natural. In this dissertation, a domain specific language based verification framework is developed to design parallel load scheduling protocols and automatically verify their behavioral properties through model checking. A specification language, LBDSL, is introduced that facilitates the development of parallel load scheduling protocols. The LBDSL verification framework uses model checking techniques to verify the asynchronous behavior of the protocol. It allows the same protocol specification to be used for verification and the code generation. The support to automatic verification during protocol development reduces the verification cost post development. The applicability of LBDSL verification framework is illustrated by performing case study on three different types of load scheduling protocols. The study shows that the LBDSL based verification approach removes the need of debugging for deadlocks and race bugs which has potential to significantly lower software development costs

    A Common Knowledge Engineering Framework for Data Assimilation, Correlation, and Extrapolation (DACE)

    Get PDF
    The Common Knowledge Engineering Framework for Data Assimilation, Correlation, and Extrapolation (DACE) project is focused on providing a software centric general framework for advanced processing and analysis of data. This translates to researchers, scientists, engineers, and system architects not having to program a new application but rather to define the system configuration, process, and processing that is needed to perform a specific functionality. This makes the limitation of the application the end users ability to fully define the functional requirements and setup the framework accordingly. This doctoral project will provide the details to the system definition, standards, metrics, schedule, and evaluation that were utilized in the performance o f this project. The project’s framework allows multiple analysis methods to be utilized either individually or concurrently depending on the end user’s configuration. The architecture will not provide limitations on what can be done. It will allow the end user to configure and define the analysis method to use

    lmproving Microcontroller and Computer Architecture Education through Software Simulation

    Get PDF
    In this thesis, we aim to improve the outcomes of students learning Computer Architecture and Embedded Systems topics within Software and Computer Engineering programs. We develop a simulation of processors that attempts to improve the visibility of hardware within the simulation environment and replace existing solutions in use within the classroom. We designate a series of requirements of a successful simulation suite based on current state-of-the-art simulations within literature. Provided these requirements, we build a quantitative rating of the same set of simulations. Additionally, we rate our previously implemented tool, hc12sim, with current solutions. Using the gaps in implementations from our state-of-the-art survey, we develop two solutions. First, we developed a web-based solution using the Scala.js compiler for Scala with an event-driven simulation engine through Akka. This Scala model implements a VHDL-like DSL for instruction control definition. Next we propose tools for developing cross-platform native applications through a project-based build system within CMake and a continuous integration pipeline using Vagrant, Oracle VirtualBox and Jenkins. Lastly, we propose a configuration-driven processor simulation built from the original hc12sim project that utilizes a Lua-based scripting interface for processor configuration. While we considered other high-level languages, Lua best fit our requirements allowing students to use a modern high-level programming language for processor configuration. Instruction controls are defined through Lua functions using high-level constructs that implicitly trigger low-level simulation events. Lastly, we conclude with suggestions for building a new solution that would better meet requirements set forth in our research question building from successful aspects from this work
    • …
    corecore