14 research outputs found

    Transient and Local Increase in the Permeability of the Blood-Brain Barrier and the Blood-Retinal Barrier by Hyperthermia of Magnetic Nanoparticles in a Rat Model

    Get PDF
    RÉSUMÉ Après avoir réussi à propulser des agents thérapeutiques encapsulés dans des micro-transporteurs magnétiques à un endroit précis à l'intérieur d'un modèle animal en utilisant le gradient de champ magnétique dans un appareil de résonance magnétique (RM) modifié, nous visons maintenant à livrer une drogue localement dans le système nerveux central (SNC). Afin de réussir la livraison de la drogue de façon localisée et augmenter l'efficacité du traitement, ce projet met de l’avant que les agents thérapeutiques doivent être administrés par des moyens pas plus envahissants qu’une injection intraveineuse, suivis par la propulsion à distance, contrôlée, et actionnée sur commande dans le SNC. La fonction exigeante du tissu neuronal dans le SNC (haute sensibilité/complexité du système) nécessite un environnement extrêmement stable. Un changement minime dans la composition du liquide interstitiel dans le SNC peut jouer un rôle prépondérant dans la régulation de son microenvironnement et de l'activité neuronale. Par conséquent, le SNC est conçu pour se protéger des fluctuations fréquentes de la concentration extracellulaire d’hormones, d’acides aminés, et des niveaux d'ions produits après les repas, l'exercice ou le stress (ainsi que d'agents pathogènes toxiques qui peuvent être en circulation dans le sang). Cette protection du SNC est permise grâce à la présence d’une barrière, nommée barrière hémato-encéphalique (BHE). Cette barrière préventive se compose essentiellement de cellules endothéliales étroitement reliées entre elles qui tapissent la surface intérieure de la plupart des vaisseaux sanguins dans le SNC. Bien que ceci offre un environnement neuronal stable, plus de 98% des molécules que constituent les drogues ne sont pas en mesure de franchir la BHE et leur pénétration est uniquement déterminée par les caractéristiques de perméabilité de la barrière. Ceci est alors un frein pour les traitements ciblant le SNC. Par conséquent, la recherche pharmaceutique fait un réel effort pour maximiser la livraison des médicaments vers le SNC. Pour autant, la présence des barrières physiologiques, bien qu’essentielles à la survie en conditions physiologiques, limitent les traitements qu’on a à notre disposition en conditions pathologiques.----------ABSTRACT After successfully propelling therapeutic agents encapsulated in magnetic micro-carriers to a specific location inside an animal model by the gradient magnetic field of a modified clinical Magnetic Resonance (MR) scanner, we are now aiming to perform local drug delivery in the region of the central nervous system (CNS). To achieve localized drug delivery and increase efficacy, this project advances the theme that the therapeutic agents must be administered by means no more invasive than an intravenous injection followed by remote propulsion, controlled tracking, and on-command actuation in the CNS. The demanding function of the CNS requires an extremely stable environment. In fact, any small change in the composition of the interstitial fluid in the CNS plays a predominant role in regulating its microenvironment and neuronal activity. Therefore, the CNS is conceived to protect itself from frequent fluctuations of extracellular concentration of hormones, amino acids, and ion levels that occur after meals, exercise, or stress - as well as from toxic pathogens that may be circulating in the blood stream. This preventive barrier consists mainly of tightly interconnected endothelial cells that carpet the inner surface of most blood vessels in the CNS. While it provides a stable neuronal environment, more than 98% of all drug molecules are not able to cross this barrier and the extent to which a molecule enters is determined only by the permeability characteristics of the barrier. Therefore, while pharmaceutical research progresses for drug delivery to the CNS, it is limited by its pharmacokinetics through physiological barriers. Successful transient and local opening of the barrier for diffusion of therapeutics could strongly support the feasibility of treating a variety of neurological disorders. A recent effort presented in this dissertation provides evidence for the emergence of a novel approach to overcome this problem. This technique uses magnetic nanoparticles (MNPs) in conjunction with an alternating magnetic field to transiently increase barrier permeability for drug delivery. MNPs can act as miniaturized heat sources that, when under the influence of the alternating magnetic field, dissipate thermal energy directly and exclusively to the barrier (hyperthermia). In addition to its novelty, the findings confirm that the technique does not damage the neurovascular unit, i.e. neurons, astrocytes, etc

    From passive tool holders to microsurgeons: safer, smaller, smarter surgical robots

    No full text

    Alternating Magnetic Field-Induced Hyperthermia Increases Iron Oxide Nanoparticle Cell Association/Uptake and Flux in Blood-Brain Barrier Models

    Get PDF
    PURPOSE: Superparamagnetic iron oxide nanoparticles (IONPs) are being investigated for brain cancer therapy because alternating magnetic field (AMF) activates them to produce hyperthermia. For central nervous system applications, brain entry of diagnostic and therapeutic agents is usually essential. We hypothesized that AMF-induced hyperthermia significantly increases IONP blood-brain barrier (BBB) association/uptake and flux. METHODS: Cross-linked nanoassemblies loaded with IONPs (CNA-IONPs) and conventional citrate-coated IONPs (citrate-IONPs) were synthesized and characterized in house. CNA-IONP and citrate-IONP BBB cell association/uptake and flux were studied using two BBB Transwell® models (bEnd.3 and MDCKII cells) after conventional and AMF-induced hyperthermia exposure. RESULTS: AMF-induced hyperthermia for 0.5 h did not alter CNA-IONP size but accelerated citrate-IONP agglomeration. AMF-induced hyperthermia for 0.5 h enhanced CNA-IONP and citrate-IONP BBB cell association/uptake. It also enhanced the flux of CNA-IONPs across the two in vitro BBB models compared to conventional hyperthermia and normothermia, in the absence of cell death. Citrate-IONP flux was not observed under these conditions. AMF-induced hyperthermia also significantly enhanced paracellular pathway flux. The mechanism appears to involve more than the increased temperature surrounding the CNA-IONPs. CONCLUSIONS: Hyperthermia induced by AMF activation of CNA-IONPs has potential to increase the BBB permeability of therapeutics for the diagnosis and therapy of various brain diseases

    Attachment of Therapeutic and Imaging Agents to Magnetotactic Bacteria Acting as Self-Propelled Bio-Carriers for Cancer Treatment

    Get PDF
    RÉSUMÉ Malgré les progrès de la médecine moderne, les traitements anticancéreux actuels n’arrivent toujours pas à vaincre le cancer. Seulement une fraction des doses de médicaments administrées parvient à la tumeur en raison d’un ciblage non spécifique, de barrières physiologiques au niveau du système vasculaire ainsi que de l’élimination immédiate de médicaments par le système immunitaire. Des dosages fréquents de médicaments deviennent nécessaires afin de surmonter ces obstacles, entraînant une toxicité systémique, des effets secondaires et un échec thérapeutique. De plus, les systèmes actuels d’imagerie médicale sont incapables de produire des images de haute qualité des structures tumorales pour les diagnostiques et les traitements. Ceci est dû aux restrictions de la résolution spatiale et de l’incapacité des agents de contraste à pénétrer dans les zones tumorales afin de générer un signal suffisamment intense. Le développement de nouveaux agents thérapeutiques ainsi que de nouvelles techniques de ciblage thérapeutique sont donc requis afin d’améliorer l’efficacité des traitements actuels. Pour ce projet de recherche doctorale, l'attachement de charges utiles à la surface de bactéries magnétotactiques flagellées Magnetococcus Marinus MC-1 (BMT) a été mise en place pour transporter de façon ciblée une quantité optimale de médicaments profondément dans les zones tumorales. Ces bio-robots autopropulsés de dimensions adéquates sont équipés d’un système de propulsion dirigeable, d’un système de navigation, et de capacités sensorielles. Divers types de complexes BMT ont été fabriquées en attachant aux BMT (i) des liposomes vides (BMT-LP), (ii) des liposomes contenant un agent anticancéreux SN38 (BMT-LSC), et (iii) des nanoparticules superparamagnétiques de magnétite (BMT-S200). L’efficacité de l'attachement des charges et du comportement des bactéries soumises à un champ magnétique directionnel ont été étudiés. Par la suite, la capacité des complexes BMT à naviguer le long d’une trajectoire prédéterminée, à infiltrer profondément l'espace interstitiel, et à cibler des zones tumorales inaccessibles, ont été étudiés dans un modèle animal soumis à un champ magnétique externe. Pour parvenir à des complexes BMT aptes à transporter suffisamment de produits pharmaceutiques et de s’accumuler préférentiellement dans les régions affectées, il faut assurer un attachement solide et stable qui ne compromet pas la motilité des BMT.----------ABSTRACT Despite the substantial achievements of modern medicine, current medical therapies cannot eradicate cancer. Due to nonspecific targeting, the multiple physiological barriers that blood-borne agents must encounter, and the rapid sequestration of drugs by the immune system, a suboptimal fraction of the total injected dose reaches the intended target. These obstacles necessitate frequent dosing to compensate therapeutic effects, resulting in systemic toxicity, undesirable side effects, and treatment failure. In addition, existing medical imaging modalities struggle to provide high quality clinical images of tumor structures for treatment purposes due to limitations in spatial resolution and lack of penetration of contrast agents into tumoral regions to induce sufficient signal intensity. To address these issues, the development of new therapeutic agents alongside improved strategies for targeting therapy with the ability to control their fate is required. The attachment of payloads to the flagellated Magnetococcus Marinus MC-1 magnetotactic bacteria (MTB) to directly transport optimal quantities of pharmaceutical agents to regions located deep in tumors is what has been proposed during the accomplishment of this PhD project. These engineered self-propelled bio-robots with an appropriate dimension are equipped with steerable propulsion, navigation system, and onboard sensory capabilities. MTB complexes were fabricated by attaching the MTB to (i) empty liposomes (MTB-LP), (ii) SN38 anticancer drug encapsulated in liposomes (MTB-LSC), and (iii) 200 nm superparamagnetic magnetite nanoparticles (MTB-S200). The attachment efficacy and magnetic response behavior from the influence of a directional magnetic field of loaded bacteria with therapeutic or imaging agents were studied. Subsequently, results showed that the attachment method was suitable to allow MC-1 MTB to transport therapeutic and imaging agents along a planned trajectory prior to penetrate deep through the interstitial space in order to reach the hypoxic regions of a tumor in an animal model. To achieve MTB complexes capable of carrying sufficient pharmaceutical agents and accumulating preferentially at disease sites, the attachment must be strong and stable without compromising the natural motility of MTB. The MTB-LP were prepared by direct covalent attachment of functionalized liposomes to the amine groups naturally presented on the surface of MTB using carbodiimide (EDC/NHS) chemistry

    Navigation multi-bifurcations de corps ferromagnétiques avec un scanner d’imagerie par résonance magnétique

    Get PDF
    RÉSUMÉ Le nombre de personnes atteintes par le carcinome hépatocellulaire (CHC), un type de cancer du foie, est en progression croissante. Mondialement, le CHC est la seconde cause de mortalité chez les patients atteints par le cancer, à cause du taux de survie extrêmement faible. Le pronostic du CHC est très mauvais : aux USA et au Canada, le taux de survie à cinq ans est de 12% et 20% respectivement. Pour les personnes à un stade très avancé, les traitements possibles sont très limités. Un des traitements possibles est la chimioembolisation hépatique qui consiste à injecter des microparticules médicamenteuses dans le foie. L’objectif de ces particules est double : d’une part, elles embolisent les vaisseaux sanguins qui nourrissent les cellules tumorales et, d’autre part, libèrent des médicaments anti-cancer qui vont détruire les cellules malades. Malheureusement, en l’absence de tout contrôle, ces vecteurs thérapeutiques détruisent aussi des cellules saines de l’organe, en général en nombre limité. Pour ainsi améliorer les soins de ces patients, nous proposons d’utiliser le scanner d’imagerie à résonance magnétique (IRM) pour diriger ces microparticules dans la circulation sanguine dans le but de cibler uniquement les cellules malades. Les retombées de ce projet sont multiples pour le patient : entre-autres, diminution des effets secondaires, et procédures moins invasives et plus efficaces. Pas uniquement limitée au foie, la navigation par résonance magnétique (NRM) a réellement le potentiel de révolutionner certaines pratiques médicales et d’améliorer grandement la prise en charge et les soins pour les patients touchés par le cancer. Cette thèse décrit les stratégies à mettre en place afin de réaliser la NRM sur plusieurs canaux consécutifs afin de rendre les procédures de navigation plus ciblées et plus localisées. Pour atteindre cet objectif, plusieurs expériences ont été menées. Tout d’abord, nous avons prouvé qu’il était possible de guider une bille de 1 mm sur 4 canaux consécutifs à l’aide d’une bobine imagerie. Nous avons donc conçu un prototype microfluidique (fantôme) sous la forme d’un arbre, où chaque canal père se divise en deux canaux fils. Nous obtenons alors huit chemins possibles avec trois bifurcations (deux choix possibles à chaque jonction). Nous avons ainsi démontré que le guidage d’une bille sur trois bifurcations était possible, avec des gradients magnétiques inférieurs à 40 mT/m et donc équivalents à ceux utilisés par des IRM cliniques. Des vitesses de déplacement de 14 cm/s ont été mesurées. Suite à ces expériences de guidage, nous avons présenté quelques résultats sur la problématique de l’augmentation de la température : en effet, les bobines de gradient, lorsqu'utilisées pour faire de la navigation, chauffent rapidement et nécessitent des temps de refroidissement. Le ratio durée de guidage sur durée de refroidissement peut ainsi être faible sans stratégie de guidage adaptée. Ainsi, nous suggérons d’utiliser le temps de refroidissement de la bobine de propulsion afin de réaliser des séquences d’imagerie pour, par exemple, évaluer la dose injectée et réévaluer les paramètres de guidage. Expérimentalement, les séquences d'imagerie n'ont pas induit d'augmentation de la température et peuvent donc être exécutées sans perte de performance.----------ABSTRACT The number of new cases of Hepatocellular Carcinoma (HCC), one type of liver cancer, is on the rise. HCC is the second leading cause of cancer death worldwide, due to extremely low survival rate. Prognosis is very poor: the overall 5-year relative survival rate is 12% in the USA and 20% in Canada. The number of available treatments for patients diagnosed at distant stages of the disease is low. A possible treatment is the transarterial chemoembolization (TACE). TACE consists in a combined injection of embolic material and chemotherapeutic drugs. The benefit of TACE is two-fold: embolisation of tumor feeding arteries and local release of anti-cancer drugs directly to the tumoral cells. Unfortunately, without any control, these vectors may reach and kill surrounding healthy liver cells. To increase patient care, we propose to use the Magnetic Resonance Imaging scanner (MRI) as an actuator to navigate therapeutic microparticules into the bloodstream toward liver lesions. Potential outcomes for the patient are, among others, a reduction of side effects and a less invasive intervention. Not restricted to liver, Magnetic Resonance Navigation (MRN) shows promises to drastically change some medical procedures and to increase cancer patient care and management. This thesis decribes strategies to achieve MRN along multiple consecutive channels. In this objective, several experiments have been conducted. Firstly, we showed that a 1-mm bead can be navigated along four consecutives microfluidic channels using an imaging coil. A microfluidic phantom has been designed to obtain eight paths with three bifurcations (two possible choices at every junction). Using magnetic gradient amplitudes lower than 40 mT/m, which are equivalent to clinical MR scanners performance, we successfully steered a bead in all the eight paths. The velocity of the bead reached 14 cm/s. Following these experiments, we worked on potential issues regarding heat rise in the coil. Indeed, imaging coils heats up very quickly when used for MRN and therefore require some time to cool. Without any temperature management strategies, the navigation time over cooling time ratio can be low and thus the procedure duration may be longer. We therefore suggested using the cooling deadtime to apply imaging sequences and acquire information about injected dose or to re-assess navigation parameters. Experimentally, since no temperature rise was measured during the imaging sequences, there is no performance loss. From these observations, more characterisation tests were conducted on the imaging coil to find the most critical parameters regarding the heat rate. We measured an average time of two minutes before the coil reaches its critical temperature. In the worst-case scenario, where at least two gradients are applied simultaneously, less than one minute of propulsion at maximum power is available. From these results, a temperature model has been derived to predict heat rise according to the characteristics of the propulsion sequence. These equations will be integrated within a broad MRN model. Lastly, the inherent design of MRI only allows the application of a single force vector upon all magnetic bodies within a volume. It is therefore impossible to steer a continuous stream of particles along multiple consecutive vessels. One requirement for multiple-bifurcation navigation is therefore to create a discrete injection of particles (bolus) such that only one bolus is navigated at a time. Furthermore, a second requirement for multiple-bifurcation navigation is the synchronisation of the release of the bolus from the catheter with the start of the propulsion sequence

    Attachment of Therapeutic and Imaging Agents to Flagellated Magneto-Aerotactic Bacteria Cells for Tumor Treatment and Targeting Purposes

    Get PDF
    Malgré les progrès significatifs dans le domaine technologique et la compréhension du cancer (au niveau biologique), il y aura toujours des défis qui ralentiront le développement et l’implémentation de certaines options de traitements dans les essais cliniques. Les chercheurs dans les secteurs de l’administration du médicament et du génie tissulaire font face à des problèmes majeurs. Ceux-ci incluent notamment l’absence d’un système conventionnel et sélectif d’administration et de diffusion du médicament, les barrières physiologiques rencontrées par les agents antitumeur hématogènes avant de parvenir aux cellules cancéreuses dans les tumeurs solides et la séquestration des médicaments par le système immunitaire qui fait en sorte qu’une petite portion de la dose totale administrée atteint le site ciblé. Ainsi, un dosage fréquent est requis pour l’obtention de l’effet thérapeutique escompté, ce qui cause des effets adverses. Cela résulte ultimement par l’échec du traitement. De plus, l’imagerie médicale est essentielle dans le diagnostic et le traitement du cancer. Toutefois, dû à la complexité structurale des tumeurs et à la profondeur de pénétration limitée dans les tumeurs des agents de contraste disponibles, ceci était infaisable. Avec les développements récents, l’obtention d’images détaillées et à hautes résolutions a été facilitée. L’attachement et l’imagerie d’agents thérapeutiques nanométriques aux microorganismes magnéto-aerotactiques connus sous le nom de BN-1 magnetotactic bacteria (MTB) pour le ciblage des tumeurs ont été étudiés au cours de ce projet de maîtrise. Les microrobots MTB semblent être des agents de ciblage autopropulsés et navigable idéaux. Ils sont capables de voyager contre la pression du fluide interstitiel de la tumeur (TIFP) afin de cibler les régions profondes des tumeurs solides. Les complexes de MTB ont été formulés en attachant aux MTB (i) des liposomes encapsulés avec du SN38 (MTB-LP-SN38) et (ii) des nanoparticules fluidMAG-ARA superparamagnétique d’oxyde de fer magnétiques de 200 nm de diamètre (MTB-MNP). Puisque les nanoparticules magnétiques se comportent comme des agents d’imagerie par résonnance magnétique (IRM), les complexes MTB-MNP facilitent le monitoring de la structure de la tumeur et des zones hypoxiques, tout en agissant comme rétroaction dans les opérations de navigation des MTB. D'une part, les MTB-LP ont été développés par conjugaison covalente directe de liposomes fonctionnalisés à des groupements amine (–NH2) qui sont naturellement présents à la surface des bactéries MTB, via un couplage carbodiimide. D’autre part, le complexe MTB-MNP a été préparé vi selon une procédure en deux étapes. Tout d’abord, les nanoparticules magnétiques ont été fonctionnalisées avec l’anticorps BN-1 (AB) contre la protéine en surface des MTB en utilisant la chimie des carbodiimide. Par la suite, les MNP-AB ont été attachés aux MTB. Les échantillons de LP, LP-SN38 et MTB-LP-SN38 ont été analysés par chromatographie liquide/spectroscopie de mass (LC/MS), spectroscopie UV, diffusion dynamique de la lumière (DLS) et potentiel zeta (ZP). De plus, l’efficacité de l’attachement, l’alignement suivant le champ magnétique et la vitesse moyenne de natation d’échantillons de MTB-MNP soumis à un champ magnétique externe ont été examinés. Subséquemment, les résultats ont montré que les cellules de bactéries MTB sont capables de transporter des quantités thérapeutiques de médicaments et d’agents d’imagerie sans compromettre leur capacité naturelle de nager.----------ABSTRACT Despite the significant progress in technology and in the biological understanding of cancer, there are still multiple challenges that slow down the development and implementation of certain treatment options in clinical trials. The researchers in the fields of drug delivery and tissue engineering are facing major problems. Some of these include the lack of a conventional and selective drug delivery and release system, the physiological barriers that the bloodborne antitumor agents encounter before reaching cancer cells in a solid tumor and sequestration of the drugs by the immune system that makes only a few percent of the total administered dose reaching the intended target site. Hence, there is a necessity for a frequent dosing to achieve the desired therapeutic effect, which can cause adverse side effects or sometimes even treatment failure. Furthermore, medical imaging is essential in cancer diagnosis and treatment. However, current medical imaging methods have limited use due to the structural complexity of the tumor and the limited penetration depth of the previously available contrast agents into tumor tissues. With recent developments, obtaining a high-resolution and detailed image of a tumor has been facilitated. The attachment of therapeutic and imaging nanosize agents to the magneto-aerotactic microorganisms known as BN-1 magnetotactic bacteria (MTB) for tumor targeting purposes has been studied during the accomplishment of this master’s project. MTB microbiorobots appear to be ideal self-propelling and navigable targeting agents. They are capable of traveling against the Tumor Interstitial Fluid Pressure (TIFP) to target deep regions in solid tumors. MTB complexes were formulated by attaching to MTB (i) SN38 anticancer drug encapsulated liposomes (MTB-LP-SN38) and (ii) 200 nm fluidMAG-ARA superparamagnetic iron oxide magnetic nanoparticles (MTB-MNP). As the magnetic nanoparticles act as magnetic resonance imaging (MRI) contrast agents, MTB-MNP complexes facilitate monitoring the tumor structure and hypoxic zones while acting as feedback control in the MTB navigation operations. On one hand, the MTB-LP was developed by direct covalent conjugation of functionalized liposomes to amine (–NH2) groups that are naturally present on the surface of MTB bacteria, via carbodiimide-mediated coupling. On the other hand, the MTB-MNP was prepared via a two-step procedure. First, the magnetic nanoparticles were functionalized with the BN-1 antibody (AB) against the MTB protein surface using carbodiimide chemistry, then the MNP-AB were attached to the MTB. The LP, LP-SN38 and MTB-LP-SN38 samples were analyzed with liquid chromatography/mass spectroscopy (LC/MS), UV-Spectroscopy, dynamic light scattering (DLS) and zeta potential (ZP). In addition, the attachment efficiency, alignment in the magnetic field and average swimming velocity of the MTB-MNP samples submitted to an external magnetic field were investigated. Subsequently, results showed that MTB bacteria cells are capable of carrying sufficient therapeutic and imaging agents without altering their natural swimming capability

    Magnetic Drug Targeting: Developing the Basics

    Get PDF
    Focusing medicine to disease locations is a needed ability to treat a variety of pathologies. During chemotherapy, for example, typically less than 0.1% of the drugs are taken up by tumor cells, with the remaining 99.9% going into healthy tissue. Physicians often select the dosage by how much a patient can physically withstand rather than by how much is needed to kill all the tumor cells. The ability to actively position medicine, to physically direct and focus it to specific locations in the body, would allow better treatment of not only cancer but many other diseases. Magnetic drug targeting (MDT) harnesses therapeutics attached to magnetizable particles, directing them to disease locations using magnetic fields. Particles injected into the vasculature will circulate throughout the body as the applied magnetic field is used to attempt confinement at target locations. The goal is to use the reservoir of particles in the general circulation and target a specific location by pulling the nanoparticles using magnetic forces. This dissertation adds three main advancements to development of magnetic drug targeting. Chapter 2 develops a comprehensive ferrofluid transport model within any blood vessel and surrounding tissue under an applied magnetic field. Chapter 3 creates a ferrofluid mobility model to predict ferrofluid and drug concentrations within physiologically relevant tissue architectures established from human autopsy samples. Chapter 4 optimizes the applied magnetic fields within the particle mobility models to predict the best treatment scenarios for two classes of chemotherapies for treating future patients with hepatic metastatic breast cancer microtumors

    Challenges in flexible microsystem manufacturing : fabrication, robotic assembly, control, and packaging.

    Get PDF
    Microsystems have been investigated with renewed interest for the last three decades because of the emerging development of microelectromechanical system (MEMS) technology and the advancement of nanotechnology. The applications of microrobots and distributed sensors have the potential to revolutionize micro and nano manufacturing and have other important health applications for drug delivery and minimal invasive surgery. A class of microrobots studied in this thesis, such as the Solid Articulated Four Axis Microrobot (sAFAM) are driven by MEMS actuators, transmissions, and end-effectors realized by 3-Dimensional MEMS assembly. Another class of microrobots studied here, like those competing in the annual IEEE Mobile Microrobot Challenge event (MMC) are untethered and driven by external fields, such as magnetic fields generated by a focused permanent magnet. A third class of microsystems studied in this thesis includes distributed MEMS pressure sensors for robotic skin applications that are manufactured in the cleanroom and packaged in our lab. In this thesis, we discuss typical challenges associated with the fabrication, robotic assembly and packaging of these microsystems. For sAFAM we discuss challenges arising from pick and place manipulation under microscopic closed-loop control, as well as bonding and attachment of silicon MEMS microparts. For MMC, we discuss challenges arising from cooperative manipulation of microparts that advance the capabilities of magnetic micro-agents. Custom microrobotic hardware configured and demonstrated during this research (such as the NeXus microassembly station) include micro-positioners, microscopes, and controllers driven via LabVIEW. Finally, we also discuss challenges arising in distributed sensor manufacturing. We describe sensor fabrication steps using clean-room techniques on Kapton flexible substrates, and present results of lamination, interconnection and testing of such sensors are presented

    Magnetic resonance imaging and navigation of ferromagnetic thermoseeds to deliver thermal ablation therapy

    Get PDF
    Minimally invasive therapies aim to deliver effective treatment whilst reducing off-target burden, limiting side effects, and shortening patient recovery times. Remote navigation of untethered devices is one method that can be used to deliver targeted treatment to deep and otherwise inaccessible locations within the body. Minimally invasive image-guided ablation (MINIMA) is a novel thermal ablation therapy for the treatment of solid tumours, whereby an untethered ferromagnetic thermoseed is navigated through tissue to a target site within the body, using the magnetic field gradients generated by a magnetic resonance imaging (MRI) system. Once at the tumour, the thermoseed is heated remotely using an alternating magnetic field, to induce cell death in the surrounding cancer tissue. The thermoseed is then navigated through the tumour, heating at pre-defined locations until the entire volume has been ablated. The aim of this PhD project is to develop MINIMA through a series of proof-of-concept studies and to assess the efficacy of the three key project components: imaging, navigation, and heating. First, an MR imaging sequence was implemented to track the thermoseeds during navigation and subsequently assessed for precision and accuracy. Secondly, movement of the thermoseeds through a viscous fluid was characterised, by measuring the effect of different navigation parameters. This was followed by navigation experiments performed in ex vivo tissue. To assess thermoseed heating, a series of in vitro experiments were conducted in air, water, and ex vivo liver tissue, before moving onto in vivo experiments in the rat brain and a murine subcutaneous tumour model. These final experiments allowed the extent of cell death induced by thermoseed heating to be determined, in both healthy and diseased tissue respectively
    corecore