10,727 research outputs found

    Learning and Management for Internet-of-Things: Accounting for Adaptivity and Scalability

    Get PDF
    Internet-of-Things (IoT) envisions an intelligent infrastructure of networked smart devices offering task-specific monitoring and control services. The unique features of IoT include extreme heterogeneity, massive number of devices, and unpredictable dynamics partially due to human interaction. These call for foundational innovations in network design and management. Ideally, it should allow efficient adaptation to changing environments, and low-cost implementation scalable to massive number of devices, subject to stringent latency constraints. To this end, the overarching goal of this paper is to outline a unified framework for online learning and management policies in IoT through joint advances in communication, networking, learning, and optimization. From the network architecture vantage point, the unified framework leverages a promising fog architecture that enables smart devices to have proximity access to cloud functionalities at the network edge, along the cloud-to-things continuum. From the algorithmic perspective, key innovations target online approaches adaptive to different degrees of nonstationarity in IoT dynamics, and their scalable model-free implementation under limited feedback that motivates blind or bandit approaches. The proposed framework aspires to offer a stepping stone that leads to systematic designs and analysis of task-specific learning and management schemes for IoT, along with a host of new research directions to build on.Comment: Submitted on June 15 to Proceeding of IEEE Special Issue on Adaptive and Scalable Communication Network

    Leveraging Intelligent Computation Offloading with Fog/Edge Computing for Tactile Internet: Advantages and Limitations

    Full text link
    [EN] With the recent advancement in wireless communication and networks, we are at the doorstep of the Tactile Internet. The Tactile Internet aims to enable the skill delivery and thereafter democratize the specialized skills for many emerging applications (e.g., remote medical, industrial machinery, remote robotics, autonomous driving). In this article, we start with the motivation of applying intelligent edge computing for computation offloading in the Tactile Internet. Afterward, we outline the main research challenges to leverage edge intelligence at the master, network, and controlled domain of the Tactile Internet. The key research challenges in the Tactile Internet lie in its stringent requirements such as ultra-low latency, ultra-high reliability, and almost zero service outage. We also discuss major entities in intelligent edge computing and their role in the Tactile Internet. Finally, several potential research challenges in edge intelligence for the Tactile Internet are highlighted.This work was supported in part by the National Natural Science Foundation of China under Grant 61901128, and Agile Edge Intelligence for Delay Sensitive IoT (AgilE-IoT) project (Grant No. 9131-00119B) of Independent Research Fund Denmark (DFF).Mukherjee, M.; Guo, M.; Lloret, J.; Zhang, Q. (2020). Leveraging Intelligent Computation Offloading with Fog/Edge Computing for Tactile Internet: Advantages and Limitations. IEEE Network. 34(5):322-329. https://doi.org/10.1109/MNET.001.200000432232934
    • …
    corecore