1,312 research outputs found

    Learning in Description Logics with Fuzzy Concrete Domains

    Get PDF
    Description Logics (DLs) are a family of logic-based Knowledge Representation (KR) formalisms, which are particularly suitable for representing incomplete yet precise structured knowledge. Several fuzzy extensions of DLs have been proposed in the KR field in order to handle imprecise knowledge which is particularly pervading in those domains where entities could be better described in natural language. Among the many approaches to fuzzification in DLs, a simple yet interesting one involves the use of fuzzy concrete domains. In this paper, we present a method for learning within the KR framework of fuzzy DLs. The method induces fuzzy DL inclusion axioms from any crisp DL knowledge base. Notably, the induced axioms may contain fuzzy concepts automatically generated from numerical concrete domains during the learning process. We discuss the results obtained on a popular learning problem in comparison with state-of-the-art DL learning algorithms, and on a test bed in order to evaluate the classification performance

    Towards unsupervised ontology learning from data

    Get PDF
    Data-driven elicitation of ontologies from structured data is a well-recognized knowledge acquisition bottleneck. The development of efficient techniques for (semi-)automating this task is therefore practically vital - yet, hindered by the lack of robust theoretical foundations. In this paper, we study the problem of learning Description Logic TBoxes from interpretations, which naturally translates to the task of ontology learning from data.In the presented framework, the learner is provided with a set of positive interpretations (i.e., logical models) of the TBox adopted by the teacher. The goal is to correctly identify the TBox given this input. We characterize the key constraints on the models that warrant finite learnability of TBoxes expressed in selected fragments of the Description Logic ε λ and define corresponding learning algorithms.This work was funded in part by the National Research Foundation under Grant no. 85482

    Bounded Rationality and Heuristics in Humans and in Artificial Cognitive Systems

    Get PDF
    In this paper I will present an analysis of the impact that the notion of “bounded rationality”, introduced by Herbert Simon in his book “Administrative Behavior”, produced in the field of Artificial Intelligence (AI). In particular, by focusing on the field of Automated Decision Making (ADM), I will show how the introduction of the cognitive dimension into the study of choice of a rational (natural) agent, indirectly determined - in the AI field - the development of a line of research aiming at the realisation of artificial systems whose decisions are based on the adoption of powerful shortcut strategies (known as heuristics) based on “satisficing” - i.e. non optimal - solutions to problem solving. I will show how the “heuristic approach” to problem solving allowed, in AI, to face problems of combinatorial complexity in real-life situations and still represents an important strategy for the design and implementation of intelligent systems

    Towards Log-Linear Logics with Concrete Domains

    Full text link
    We present MEL++\mathcal{MEL}^{++} (M denotes Markov logic networks) an extension of the log-linear description logics EL++\mathcal{EL}^{++}-LL with concrete domains, nominals, and instances. We use Markov logic networks (MLNs) in order to find the most probable, classified and coherent EL++\mathcal{EL}^{++} ontology from an MEL++\mathcal{MEL}^{++} knowledge base. In particular, we develop a novel way to deal with concrete domains (also known as datatypes) by extending MLN's cutting plane inference (CPI) algorithm.Comment: StarAI201
    • …
    corecore