291,352 research outputs found

    Information access for personal media archives

    Get PDF
    It is now possible to archive much of our life experiences in digital form using a variety of sources, e.g. blogs written, tweets made, photographs taken, etc. Information can be captured from a myriad of personal information devices. In this workshop, researchers from diverse disciplines discussed how we can advance towards the goal of effective capture, retrieval and exploration of e-memories. Proposed solutions included advanced textile sensors to capture new data, P2P methods to store this data, and personal reflection applications to review this data. Much discussion centered around search and navigation strategies, interactive interfaces, and the cognitive basis in using digitally captured information as memorabilia

    Guided Visual Exploration of Relations in Data Sets

    Get PDF
    Efficient explorative data analysis systems must take into account both what a user knows and wants to know. This paper proposes a principled framework for interactive visual exploration of relations in data, through views most informative given the user's current knowledge and objectives. The user can input pre-existing knowledge of relations in the data and also formulate specific exploration interests, which are then taken into account in the exploration. The idea is to steer the exploration process towards the interests of the user, instead of showing uninteresting or already known relations. The user's knowledge is modelled by a distribution over data sets parametrised by subsets of rows and columns of data, called tile constraints. We provide a computationally efficient implementation of this concept based on constrained randomisation. Furthermore, we describe a novel dimensionality reduction method for finding the views most informative to the user, which at the limit of no background knowledge and with generic objectives reduces to PCA. We show that the method is suitable for interactive use and is robust to noise, outperforms standard projection pursuit visualisation methods, and gives understandable and useful results in analysis of real-world data. We provide an open-source implementation of the framework.Peer reviewe

    GPU Accelerated Browser for Neuroimaging Genomics

    Get PDF
    Neuroimaging genomics is an emerging field that provides exciting opportunities to understand the genetic basis of brain structure and function. The unprecedented scale and complexity of the imaging and genomics data, however, have presented critical computational bottlenecks. In this work we present our initial efforts towards building an interactive visual exploratory system for mining big data in neuroimaging genomics. A GPU accelerated browsing tool for neuroimaging genomics is created that implements the ANOVA algorithm for single nucleotide polymorphism (SNP) based analysis and the VEGAS algorithm for gene-based analysis, and executes them at interactive rates. The ANOVA algorithm is 110 times faster than the 4-core OpenMP version, while the VEGAS algorithm is 375 times faster than its 4-core OpenMP counter part. This approach lays a solid foundation for researchers to address the challenges of mining large-scale imaging genomics datasets via interactive visual exploration

    Combining design and performance in a data visualization management system

    Get PDF
    Interactive data visualizations have emerged as a prominent way to bring data exploration and analysis capabilities to both technical and non-technical users. Despite their ubiquity and importance across applications, multiple design- and performance-related challenges lurk beneath the visualization creation process. To meet these challenges, application designers either use visualization systems (e.g., Endeca, Tableau, and Splunk) that are tailored to domain-specific analyses, or manually design, implement, and optimize their own solutions. Unfortunately, both approaches typically slow down the creation process. In this paper, we describe the status of our progress towards an end-to-end relational approach in our data visualization management system (DVMS). We introduce DeVIL, a SQL-like language to express static as well as interactive visualizations as database views that combine user inpu

    A Visual Analytic Environment to Co-locate Peoples' Tweets with City Factual Data

    Full text link
    Social Media platforms (e.g., Twitter, Facebook, etc.) are used heavily by public to provide news, opinions, and reactions towards events or topics. Integrating such data with the event or topic factual data could provide a more comprehensive understanding of the underlying event or topic. Targeting this, we present our visual analytics tool, called VC-FaT, that integrates peoples' tweet data regarding crimes in San Francisco city with the city factual crime data. VC-FaT provides a number of interactive visualizations using both data sources for better understanding and exploration of crime activities happened in the city during a period of five years.Comment: 2 page

    Minimizing User Effort in Large Scale Example-driven Data Exploration

    Get PDF
    Data Exploration is a key ingredient in a widely diverse set of discovery-oriented applications, including scientific computing, financial analysis, and evidence-based medicine. It refers to a series of exploratory tasks that aim to extract useful pieces of knowledge from data, and its challenge is to do so without requiring the user to specify with precision what information is being searched for. The goal of assisting users in constructing their exploratory queries effortlessly, which effectively reveals interesting data objects, has led to the development of a variety of intelligent semi-automatic approaches. Among such approaches, Example-driven Exploration is rapidly becoming an attractive choice for exploratory query formulation since it attempts to minimize the amount of prior knowledge required from the user to form an accurate exploratory query. In particular, this dissertation focuses on interactive Example-driven Exploration, which steers the user towards discovering all data objects relevant to the usersā€™ exploration based on their feedback on a small set of examples. Interactive Example-driven Exploration is especially beneficial for non-expert users, as it enables them to circumvent query languages by assigning relevancy to examples as a proxy for the intended exploratory analysis. However, existing interactive Example-driven Exploration systems fall short of supporting the need to perform complex explorations over large, unstructured high-dimensional data. To overcome these challenges, we have developed new methods of data reduction, example selection, data indexing, and result refinement that support practical, interactive data exploration. The novelty of our approach is anchored on leveraging active learning and query optimization techniques that strike a balance between maximizing accuracy and minimizing user effort in providing feedback while enabling interactive performance for exploration tasks with arbitrary, large-sized datasets. Furthermore, it extends the exploration beyond the structured data by supporting a variety of high-dimensional unstructured data and enables the refinement of results when the exploration task is associated with too many relevant data objects that could be overwhelming to the user. To affirm the effectiveness of our proposed models, techniques, and algorithms, we implemented multiple prototype systems and evaluated them using real datasets. Some of them were also used in domain-specific analytics tools

    Visual and interactive exploration of point data

    Get PDF
    Point data, such as Unit Postcodes (UPC), can provide very detailed information at fine scales of resolution. For instance, socio-economic attributes are commonly assigned to UPC. Hence, they can be represented as points and observable at the postcode level. Using UPC as a common field allows the concatenation of variables from disparate data sources that can potentially support sophisticated spatial analysis. However, visualising UPC in urban areas has at least three limitations. First, at small scales UPC occurrences can be very dense making their visualisation as points difficult. On the other hand, patterns in the associated attribute values are often hardly recognisable at large scales. Secondly, UPC can be used as a common field to allow the concatenation of highly multivariate data sets with an associated postcode. Finally, socio-economic variables assigned to UPC (such as the ones used here) can be non-Normal in their distributions as a result of a large presence of zero values and high variances which constrain their analysis using traditional statistics. This paper discusses a Point Visualisation Tool (PVT), a proof-of-concept system developed to visually explore point data. Various well-known visualisation techniques were implemented to enable their interactive and dynamic interrogation. PVT provides multiple representations of point data to facilitate the understanding of the relations between attributes or variables as well as their spatial characteristics. Brushing between alternative views is used to link several representations of a single attribute, as well as to simultaneously explore more than one variable. PVTā€™s functionality shows how the use of visual techniques embedded in an interactive environment enable the exploration of large amounts of multivariate point data
    • ā€¦
    corecore