845 research outputs found

    Biosignal‐based human–machine interfaces for assistance and rehabilitation : a survey

    Get PDF
    As a definition, Human–Machine Interface (HMI) enables a person to interact with a device. Starting from elementary equipment, the recent development of novel techniques and unobtrusive devices for biosignals monitoring paved the way for a new class of HMIs, which take such biosignals as inputs to control various applications. The current survey aims to review the large literature of the last two decades regarding biosignal‐based HMIs for assistance and rehabilitation to outline state‐of‐the‐art and identify emerging technologies and potential future research trends. PubMed and other databases were surveyed by using specific keywords. The found studies were further screened in three levels (title, abstract, full‐text), and eventually, 144 journal papers and 37 conference papers were included. Four macrocategories were considered to classify the different biosignals used for HMI control: biopotential, muscle mechanical motion, body motion, and their combinations (hybrid systems). The HMIs were also classified according to their target application by considering six categories: prosthetic control, robotic control, virtual reality control, gesture recognition, communication, and smart environment control. An ever‐growing number of publications has been observed over the last years. Most of the studies (about 67%) pertain to the assistive field, while 20% relate to rehabilitation and 13% to assistance and rehabilitation. A moderate increase can be observed in studies focusing on robotic control, prosthetic control, and gesture recognition in the last decade. In contrast, studies on the other targets experienced only a small increase. Biopotentials are no longer the leading control signals, and the use of muscle mechanical motion signals has experienced a considerable rise, especially in prosthetic control. Hybrid technologies are promising, as they could lead to higher performances. However, they also increase HMIs’ complex-ity, so their usefulness should be carefully evaluated for the specific application

    Current state of digital signal processing in myoelectric interfaces and related applications

    Get PDF
    This review discusses the critical issues and recommended practices from the perspective of myoelectric interfaces. The major benefits and challenges of myoelectric interfaces are evaluated. The article aims to fill gaps left by previous reviews and identify avenues for future research. Recommendations are given, for example, for electrode placement, sampling rate, segmentation, and classifiers. Four groups of applications where myoelectric interfaces have been adopted are identified: assistive technology, rehabilitation technology, input devices, and silent speech interfaces. The state-of-the-art applications in each of these groups are presented.Peer reviewe

    Electromyography-Based Control of Lower Limb Prostheses: A Systematic Review

    Get PDF
    Most amputations occur in lower limbs and despite improvements in prosthetic technology, no commercially available prosthetic leg uses electromyography (EMG) information as an input for control. Efforts to integrate EMG signals as part of the control strategy have increased in the last decade. In this systematic review, we summarize the research in the field of lower limb prosthetic control using EMG. Four different online databases were searched until June 2022: Web of Science, Scopus, PubMed, and Science Direct. We included articles that reported systems for controlling a prosthetic leg (with an ankle and/or knee actuator) by decoding gait intent using EMG signals alone or in combination with other sensors. A total of 1,331 papers were initially assessed and 121 were finally included in this systematic review. The literature showed that despite the burgeoning interest in research, controlling a leg prosthesis using EMG signals remains challenging. Specifically, regarding EMG signal quality and stability, electrode placement, prosthetic hardware, and control algorithms, all of which need to be more robust for everyday use. In the studies that were investigated, large variations were found between the control methodologies, type of research participant, recording protocols, assessments, and prosthetic hardware

    The "Federica" hand: a simple, very efficient prothesis

    Get PDF
    Hand prostheses partially restore hand appearance and functionalities. Not everyone can afford expensive prostheses and many low-cost prostheses have been proposed. In particular, 3D printers have provided great opportunities by simplifying the manufacturing process and reducing costs. Generally, active prostheses use multiple motors for fingers movement and are controlled by electromyographic (EMG) signals. The "Federica" hand is a single motor prosthesis, equipped with an adaptive grasp and controlled by a force-myographic signal. The "Federica" hand is 3D printed and has an anthropomorphic morphology with five fingers, each consisting of three phalanges. The movement generated by a single servomotor is transmitted to the fingers by inextensible tendons that form a closed chain; practically, no springs are used for passive hand opening. A differential mechanical system simultaneously distributes the motor force in predefined portions on each finger, regardless of their actual positions. Proportional control of hand closure is achieved by measuring the contraction of residual limb muscles by means of a force sensor, replacing the EMG. The electrical current of the servomotor is monitored to provide the user with a sensory feedback of the grip force, through a small vibration motor. A simple Arduino board was adopted as processing unit. The differential mechanism guarantees an efficient transfer of mechanical energy from the motor to the fingers and a secure grasp of any object, regardless of its shape and deformability. The force sensor, being extremely thin, can be easily embedded into the prosthesis socket and positioned on both muscles and tendons; it offers some advantages over the EMG as it does not require any electrical contact or signal processing to extract information about the muscle contraction intensity. The grip speed is high enough to allow the user to grab objects on the fly: from the muscle trigger until to the complete hand closure, "Federica" takes about half a second. The cost of the device is about 100 US$. Preliminary tests carried out on a patient with transcarpal amputation, showed high performances in controlling the prosthesis, after a very rapid training session. The "Federica" hand turned out to be a lightweight, low-cost and extremely efficient prosthesis. The project is intended to be open-source: all the information needed to produce the prosthesis (e.g. CAD files, circuit schematics, software) can be downloaded from a public repository. Thus, allowing everyone to use the "Federica" hand and customize or improve it
    • 

    corecore