178,222 research outputs found

    Landslide risk management through spatial analysis and stochastic prediction for territorial resilience evaluation

    Get PDF
    Natural materials, such as soils, are influenced by many factors acting during their formative and evolutionary process: atmospheric agents, erosion and transport phenomena, sedimentation conditions that give soil properties a non-reducible randomness by using sophisticated survey techniques and technologies. This character is reflected not only in spatial variability of properties which differs from point to point, but also in multivariate correlation as a function of reciprocal distance. Cognitive enrichment, offered by the response of soils associated with their intrinsic spatial variability, implies an increase in the evaluative capacity of the contributing causes and potential effects in failure phenomena. Stability analysis of natural slopes is well suited to stochastic treatment of uncertainty which characterized landslide risk. In particular, this study has been applied through a back- analysis procedure to a slope located in Southern Italy that was subject to repeated phenomena of hydrogeological instability (extended for several kilometres in recent years). The back-analysis has been carried out by applying spatial analysis to the controlling factors as well as quantifying the hydrogeological hazard through unbiased estimators. A natural phenomenon, defined as stochastic process characterized by mutually interacting spatial variables, has led to identify the most critical areas, giving reliability to the scenarios and improving the forecasting content. Moreover, the phenomenological characterization allows the optimization of the risk levels to the wide territory involved, supporting decision-making process for intervention priorities as well as the effective allocation of the available resources in social, environmental and economic contexts

    An Assurance Framework for Independent Co-assurance of Safety and Security

    Get PDF
    Integrated safety and security assurance for complex systems is difficult for many technical and socio-technical reasons such as mismatched processes, inadequate information, differing use of language and philosophies, etc.. Many co-assurance techniques rely on disregarding some of these challenges in order to present a unified methodology. Even with this simplification, no methodology has been widely adopted primarily because this approach is unrealistic when met with the complexity of real-world system development. This paper presents an alternate approach by providing a Safety-Security Assurance Framework (SSAF) based on a core set of assurance principles. This is done so that safety and security can be co-assured independently, as opposed to unified co-assurance which has been shown to have significant drawbacks. This also allows for separate processes and expertise from practitioners in each domain. With this structure, the focus is shifted from simplified unification to integration through exchanging the correct information at the right time using synchronisation activities

    Limits and opportunities of risk analysis application in railway systems

    Get PDF
    Risk Analysis is a collection of methods widely used in many industrial sectors. In the transport sector it has been particularly used for air transport applications. The reasons for this wide use are well-known: risk analysis allows to approach the safety theme in a stochastic - rather than deterministic - way, it forces to break down the system in sub-components, last but not least it allows a comparison between solutions with different costs, introducing de facto an element of economic feasibility of the project alternatives in the safety field. Apart from the United Kingdom, in Europe the application of this tool in the railway sector is relatively recent. In particular Directive 2004/49/EC (the "railway safety directive") provides for compulsory risk assessment in relation to the activities of railway Infrastructure Managers (IMs) and of Railway Undertakings (RUs). Nevertheless the peculiarity of the railway system - in which human, procedural, environmental and technological components have a continuous interchange and in which human responsibilities and technological functions often overlap - induced the EC to allow wide margins of subjectivity in the interpretation of risk assessment. When enacting Commission Regulation (EC) No 352/2009 which further regulates this subject, a risk assessment is considered positive also if the IM or RU declare to take safety measures widely used in normal practice. The paper shows the results of a structured comparative analysis of the rail sector and other industrial sectors, which illustrate the difficulties, but also the opportunities, of a transfer towards the railway system of the risk analysis methods currently in use for the other systems

    Italian hybrid fire prevention code

    Get PDF
    Fire safety of residential buildings and activities subjected to fire inspection is a difficult task, especially when the safety targets have to be adopted in built buildings or in activities that are going to be modified into more complex ones. Generally, these circumstances show more constraints and it could be difficult to achieve an acceptable level of fire residual risk by prescriptive based fireregulations. Therefore, the Italian National Fire Rescue and Service in charge for fire safety, in August 2015 issued a new Fire Prevention Code whose design methodology is more oriented to fire performance based design rather than prescriptive fire codes. The flexibility of this new fire design methodology offers a very complex tool to experts in order to design fire safety measures and strategies of buildings and activities subjected to fire inspection. The present paper aims tohighlig hts the contents and the fire safety strategy design methodology of the new Italian Fire Prevention Code

    The safety case and the lessons learned for the reliability and maintainability case

    Get PDF
    This paper examine the safety case and the lessons learned for the reliability and maintainability case

    What does it take to make integrated care work? A ‘cookbook’ for large-scale deployment of coordinated care and telehealth

    Get PDF
    The Advancing Care Coordination & Telehealth Deployment (ACT) Programme is the first to explore the organisational and structural processes needed to successfully implement care coordination and telehealth (CC&TH) services on a large scale. A number of insights and conclusions were identified by the ACT programme. These will prove useful and valuable in supporting the large-scale deployment of CC&TH. Targeted at populations of chronic patients and elderly people, these insights and conclusions are a useful benchmark for implementing and exchanging best practices across the EU. Examples are: Perceptions between managers, frontline staff and patients do not always match; Organisational structure does influence the views and experiences of patients: a dedicated contact person is considered both important and helpful; Successful patient adherence happens when staff are engaged; There is a willingness by patients to participate in healthcare programmes; Patients overestimate their level of knowledge and adherence behaviour; The responsibility for adherence must be shared between patients and health care providers; Awareness of the adherence concept is an important factor for adherence promotion; The ability to track the use of resources is a useful feature of a stratification strategy, however, current regional case finding tools are difficult to benchmark and evaluate; Data availability and homogeneity are the biggest challenges when evaluating the performance of the programmes

    Quantify resilience enhancement of UTS through exploiting connect community and internet of everything emerging technologies

    Get PDF
    This work aims at investigating and quantifying the Urban Transport System (UTS) resilience enhancement enabled by the adoption of emerging technology such as Internet of Everything (IoE) and the new trend of the Connected Community (CC). A conceptual extension of Functional Resonance Analysis Method (FRAM) and its formalization have been proposed and used to model UTS complexity. The scope is to identify the system functions and their interdependencies with a particular focus on those that have a relation and impact on people and communities. Network analysis techniques have been applied to the FRAM model to identify and estimate the most critical community-related functions. The notion of Variability Rate (VR) has been defined as the amount of output variability generated by an upstream function that can be tolerated/absorbed by a downstream function, without significantly increasing of its subsequent output variability. A fuzzy based quantification of the VR on expert judgment has been developed when quantitative data are not available. Our approach has been applied to a critical scenario (water bomb/flash flooding) considering two cases: when UTS has CC and IoE implemented or not. The results show a remarkable VR enhancement if CC and IoE are deploye
    • …
    corecore