94,364 research outputs found

    Synchronous communication in PLM environments using annotated CAD models

    Full text link
    The connection of resources, data, and knowledge through communication technology plays a vital role in current collaborative design methodologies and Product Lifecycle Management (PLM) systems, as these elements act as channels for information and meaning. Despite significant advances in the area of PLM, most communication tools are used as separate services that are disconnected from existing development environments. Consequently, during a communication session, the specific elements being discussed are usually not linked to the context of the discussion, which may result in important information getting lost or becoming difficult to access. In this paper, we present a method to add synchronous communication functionality to a PLM system based on annotated information embedded in the CAD model. This approach provides users a communication channel that is built directly into the CAD interface and is valuable when individuals need to be contacted regarding the annotated aspects of a CAD model. We present the architecture of a new system and its integration with existing PLM systems, and describe the implementation details of an annotation-based video conferencing module for a commercial CAD application.This work was supported by the Spanish Ministry of Economy and Competitiveness and the FEDER Funds, through the ANNOTA project (Ref. TIN2013-46036-C3-1-R).Camba, JD.; Contero, M.; Salvador Herranz, GM.; Plumed, R. (2016). Synchronous communication in PLM environments using annotated CAD models. Journal of Systems Science and Systems Engineering. 25(2):142-158. https://doi.org/10.1007/s11518-016-5305-5S142158252Abrahamson, S., Wallace, D., Senin, N. & Sferro, P. (2000). Integrated design in a service marketplace. Computer-Aided Design, 32(2):97–107.Ahmed, S. (2005). Encouraging reuse of design knowledge: a method to index knowledge. Design Studies, 26:565–592.Alavi, M. & Tiwana, A (2002). Knowledge integration in virtual teams: the potential role of KMS. Journal of the American Society for Information Science and Technology, 53:1029–1037.Ameri, F. & Dutta, D. (2005). Product lifecycle management: closing the knowledge loops. Computer-Aided Design and Applications, 2(5):577–590.Anderson, A.H., Smallwood, L., MacDonald, R., Mullin, J., Fleming, A. & O'Malley, C. (2000). Video data and video links in mediated communication: what do users value? International Journal of Human-Computer Studies, 52(1):165–187.Arias, E., Eden, H., Fischer, G., Gorman, A. & Scharff, E. (2000). Transcending the individual human mind–creating shared understanding through collaborative design. ACM Transactions on Computer-Human Interaction (TOCHI) 7(1): 84–113.Barley, W.C., Leonardi, P.M., & Bailey, D.E. (2012). Engineering objects for collaboration: strategies of ambiguity and clarity at knowledge boundaries. Human Communication Research, 38:280–308.Boujut, J.F. & Dugdale, J. (2006). Design of a 3D annotation tool for supporting evaluation activities in engineering design. Cooperative Systems Design, COOP 6:1–8.Camba, J., Contero, M., Johnson, M. & Company, P. (2014). Extended 3D annotations as a new mechanism to explicitly communicate geometric design intent and increase CAD model reusability. Computer-Aided Design, 57:61–73.Camba, J., Contero, M. & Salvador-Herranz, G. (2014). Speak with the annotator: promoting interaction in a knowledge-based CAD environment built on the extended annotation concept. Proceedings of the 2014 IEEE 18th International Conference on Computer Supported Cooperative Work in Design (CSCWD), 196–201.Chudoba, K.M., Wynn, E., Lu, M. & Watson-Manheim, M.B. (2005). How virtual are we? Measuring virtuality and understanding its impact in a global organization. Information Systems Journal, 15(4):279–306.Danesi, F., Gardan, N. & Gardan, Y. (2006). Collaborative Design: from Concept to Application. Geometric Modeling and Imaging—New Trends, 90–96.Durstewitz, M., Kiefner, B., Kueke, R., Putkonen, H., Repo, P. & Tuikka, T. (2002). Virtual collaboration environment for aircraft design. Proceedings of the IEEE 6th International Conference on Information Visualisation, 502–507.Fisher, D., Brush, A.J., Gleave, E. & Smith, M.A. (2006). Revisiting Whittaker and Sidner’s email overload ten years later. Proceedings of the 2006 20th Anniversary Conference on Computer Supported Cooperative Work. ACM, BanffFonseca, M.J., Henriques, E., Silva, N., Cardoso, T. & Jorge, J.A. (2006). A collaborative CAD conference tool to support mobile engineering. Rapid Product Development (RPD’06), Marinha Grande, Portugal.Frechette, S.P. (2011). Model based enterprise for manufacturing. Proceedings of the 44th CIRP International Conference on Manufacturing Systems.Fu, W.X., Bian, J. & Xu, Y.M. (2013). A video conferencing system for collaborative engineering design. Applied Mechanics and Materials, 344:246–252.Fuh, J.Y.H. & Li, W.D. (2005). Advances in collaborative CAD: the-state-of-the art. Computer-Aided Design, 37:571–581.Fussell, S.R., Kraut, R.E. & Siegel, J. (2000). Coordination of communication: effects of shared visual context on collaborative work. Proceedings of the 2000 ACM Conference on Computer Supported Cooperative Work, 21–30.Gajewska, H., Kistler, J., Manasse, M.S. & Redell, D. (1994). Argo: a system for distributed collaboration. Proceedings of the ACM Second International Conference on Multimedia, San Francisco, CA, USA. 433–440.Gantz, J., Reinsel, D., Chute, C., Schlichting, W., Mcarthur, J., Minton, S., Xheneti, I., Toncheva, A. & Manfrediz, A. (2007). The expanding digital universe: a forecast of worldwide information growth through 2010. IDC, Massachusetts.Gowan, Jr. J.A. & Downs, J.M. (1994). Video conferencing human-machine interface: a field study. Information and Management, 27(6):341–356.Gupta, A., Mattarelli, E., Seshasai, S. & Broschak, J. (2009). Use of collaborative technologies and knowledge sharing in co-located and distributed teams: towards the 24-h knowledge factory. The Journal of Strategic Information Systems, 18:147–161.Hickson, I. (2009). The Web Socket Protocol IETF, Standards Track.Hong, J., Toye, G. & Leifer, L.J. (1996). Engineering design notebook for sharing and reuse. Computers in Industry, 29:27–35.Isaacs, E.A. & Tang, J.C. (1994). What video can and cannot do for collaboration: a case study. Multimedia Systems, 2(2):63–73.Karsenty, L. (1999). Cooperative work and shared visual context: an empirical study of comprehension problems in side-by-side and remote help dialogues. Human Computer Interaction, 14(3): 283–315.Lahti, H., Seitamaa-Hakkarainen, P. & Hakkarainen, K. (2004). Collaboration patterns in computer supported collaborative designing. Design Studies, 25:351–371.Leenders, R.T.A., Van Engelen, J.M. & Kratzer, J. (2003). Virtuality, communication, and new product team creativity: a social network perspective. Journal of Engineering and Technology Management, 20(1):69–92.Levitt, R.E., Jin, Y. & Dym, C.L. (1991). Knowledge-based support for management of concurrent, multidisciplinary design. Artificial Intelligence for Engineering, Design, Analysis and Manufacturing, 5(2):77–95.Li, C., McMahon, C. & Newnes, L. (2009). Annotation in product lifecycle management: a review of approaches. Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, DETC2009. Vol. 2. New York: ASME, 797–806.Li, W.D., Lu, W.F., Fuh, J.Y. & Wong, Y.S. (2005). Collaborative computer-aided design-research and development status. Computer-Aided Design, 37(9):931–940.Londono, F., Cleetus, K.J., Nichols, D.M., Iyer, S., Karandikar, H.M., Reddy, S.M., Potnis, S.M., Massey, B., Reddy, A. & Ganti, V. (1992). Coordinating a virtual team. CERC-TR-RN-92-005, Concurrent Engineering Research Centre, West Virginia University, West Virginia.Lubell, J., Chen, K., Horst, J., Frechette, S., & Huang, P. (2012). Model based enterprise/technical data package summit report. NIST Technical Note, 1753.May, A. & Carter, C. (2001). A case study of virtual team working in the European automotive industry. International Journal of Industrial Ergonomics, 27(3):171–186.Olson, J.S., Olson, G.M. & Meader, D.K. (1995). What mix of video and audio is useful for small groups doing remote real-time design work? Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. ACM Press, Addison-Wesley Publishing Co.Ping-Hung, H., Mishra, C.S. & Gobeli, D.H. (2003). The return on R&D versus capital expenditures in pharmaceutical and chemical industries. IEEE Transactions on Engineering Management, 50:141–150.Sharma, A. (2005). Collaborative product innovation: integrating elements of CPI via PLM framework. Computer-Aided Design, 37(13):1425–1434.Shum, S.J.B., Selvin, A.M., Sierhuis, M., Conklin, J., Haley, C.B. & Nuseibeh, B. (2006). Hypermedia support for argumentation-based rationale: 15 Years on from Gibis and Qoc. Rationale Management in Software Engineering, 111–132.Siltanen, P. & Valli, S. (2013). Web-based 3D Mediated Communication in Manufacturing Industry. Concurrent Engineering Approaches for Sustainable Product Development in a Multidisciplinary Environment, 1181–1192. Springer London.Stark, J. (2011). Product Lifecycle Management. 1–16. Springer London.Tavcar, J., Potocnik, U. & Duhovnik, J. (2013). PLM used as a backbone for concurrent engineering in supply chain. Concurrent Engineering Approaches for Sustainable Product Development in a Multi-Disciplinary Environment, 681–692.Tay, F.E.H. & Ming, C. (2001). A shared multi-media design environment for concurrent engineering over the internet. Concurrent Engineering, 9(1):55–63.Tay, F.E.H. & Roy, A. (2003). CyberCAD: a collaborative approach in 3D-CAD technology in a multimedia-supported environment. Computers in Industry, 52(2):127–145.Toussaint, J. & Cheng, K. (2002). Design agility and manufacturing responsiveness on the web. Integrated Manufacturing Systems, 13(5):328–339.Tsoi, K.N. & Rahman, S.M. (1996). Media-on-demand multimedia electronic mail: a tool for collaboration on the web. Proceedings of the 5th IEEE International Symposium on High Performance Distributed Computing.Upton, D.M. & Mcafee, A. (1999). The Real Virtual Factory. Harvard Business School Press, 69–89.Vila, C., Estruch, A., Siller, H.R., Abellán, J.V. & Romero, F. (2007). Workflow methodology for collaborative design and manufacturing. Cooperative Design, Visualization, and Engineering 42–49, Springer Berlin Heidelberg.Wasiak, J., Hicks, B., Newnes, L., Dong, A., & Burrow, L. (2010). Understanding engineering email: the development of a taxonomy for identifying and classifying engineering work. Research in Engineering Design, 21(1):43–64.Wasko, M.M. & Faraj, S. (2005). Why should I share? Examining social capital and knowledge contribution in electronic networks of practice. MIS Quarterly: Management Information Systems, 29:35–57.Yang, Q.Z., Zhang, Y., Miao, C.Y. & Shen, Z.Q. (2008). Semantic annotation of digital engineering resources for multidisciplinary design collaboration. ASME 2008 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 617–624. American Society of Mechanical Engineers.You, C.F. & Chao, S.N. (2006). Multilayer architecture in collaborative environment. Concurrent Engineering Research and Applications, 14(4):273–281.Yuan, Y.C., Fulk, J., Monge, P.R. & Contractor, N. (2010). Expertise directory development, shared task interdependence, and strength of communication network ties as multilevel predictors of expertise exchange in transactive memory work groups. Communication Research, 37: 20–47

    AI and OR in management of operations: history and trends

    Get PDF
    The last decade has seen a considerable growth in the use of Artificial Intelligence (AI) for operations management with the aim of finding solutions to problems that are increasing in complexity and scale. This paper begins by setting the context for the survey through a historical perspective of OR and AI. An extensive survey of applications of AI techniques for operations management, covering a total of over 1200 papers published from 1995 to 2004 is then presented. The survey utilizes Elsevier's ScienceDirect database as a source. Hence, the survey may not cover all the relevant journals but includes a sufficiently wide range of publications to make it representative of the research in the field. The papers are categorized into four areas of operations management: (a) design, (b) scheduling, (c) process planning and control and (d) quality, maintenance and fault diagnosis. Each of the four areas is categorized in terms of the AI techniques used: genetic algorithms, case-based reasoning, knowledge-based systems, fuzzy logic and hybrid techniques. The trends over the last decade are identified, discussed with respect to expected trends and directions for future work suggested

    Genuine lab experiences for students in resource constrained environments: The RealLab with integrated intelligent assessment.

    Get PDF
    Laboratory activities are indispensable for developing engineering skills. Computer Aided Learning (CAL) tools can be used to enhance laboratory learning in various ways, the latest approach being the virtual laboratory technique that emulates traditional laboratory processes. This new approach makes it possible to give students complete and genuine laboratory experiences in situations constrained by limited resources in the provision of laboratory facilities and infrastructure and/or where there is need for laboratory education, for large classes, with only one laboratory stand. This may especially be the case in countries in transition. Most existing virtual laboratories are not available for purchase. Where they are, they may not be cost friendly for resource constrained environments. Also, most do not integrate any form of assessment structure. In this paper, we present a very cost friendly virtual laboratory solution for genuine laboratory experiences in resource constrained environments, with integrated intelligent assessment

    Practitioner requirements for integrated Knowledge-Based Engineering in Product Lifecycle Management.

    No full text
    The effective management of knowledge as capital is considered essential to the success of engineering product/service systems. As Knowledge Management (KM) and Product Lifecycle Management (PLM) practice gain industrial adoption, the question of functional overlaps between both the approaches becomes evident. This article explores the interoperability between PLM and Knowledge-Based Engineering (KBE) as a strategy for engineering KM. The opinion of key KBE/PLM practitioners are systematically captured and analysed. A set of ranked business functionalities to be fulfiled by the KBE/PLM systems integration is elicited. The article provides insights for the researchers and the practitioners playing both the user and development roles on the future needs for knowledge systems based on PLM

    Applications integration for manufacturing control systems with particular reference to software interoperability issues

    Get PDF
    The introduction and adoption of contemporary computer aided manufacturing control systems (MCS) can help rationalise and improve the productivity of manufacturing related activities. Such activities include product design, process planning and production management with CAD, CAPP and CAPM. However, they tend to be domain specific and would generally have been designed as stand-alone systems where there is a serious lack of consideration for integration requirements with other manufacturing activities outside the area of immediate concern. As a result, "islands of computerisation" exist which exhibit deficiencies and constraints that inhibit or complicate subsequent interoperation among typical MCS components. As a result of these interoperability constraints, contemporary forms of MCS typically yield sub-optimal benefits and do not promote synergy on an enterprise-wide basis. The move towards more integrated manufacturing systems, which requires advances in software interoperability, is becoming a strategic issue. Here the primary aim is to realise greater functional synergy between software components which span engineering, production and management activities and systems. Hence information of global interest needs to be shared across conventional functional boundaries between enterprise functions. The main thrust of this research study is to derive a new generation of MCS in which software components can "functionally interact" and share common information through accessing distributed data repositories in an efficient, highly flexible and standardised manner. It addresses problems of information fragmentation and the lack of formalism, as well as issues relating to flexibly structuring interactions between threads of functionality embedded within the various components. The emphasis is on the: • definition of generic information models which underpin the sharing of common data among production planning, product design, finite capacity scheduling and cell control systems. • development of an effective framework to manage functional interaction between MCS components, thereby coordinating their combined activities. • "soft" or flexible integration of the MCS activities over an integrating infrastructure in order to (i) help simplify typical integration problems found when using contemporary interconnection methods for applications integration; and (ii) enable their reconfiguration and incremental development. In order to facilitate adaptability in response to changing needs, these systems must also be engineered to enable reconfigurability over their life cycle. Thus within the scope of this research study a new methodology and software toolset have been developed to formally structure and support implementation, run-time and change processes. The tool set combines the use of IDEFO (for activity based or functional modelling), IDEFIX (for entity-attribute relationship modelling), and EXPRESS (for information modelling). This research includes a pragmatic but effective means of dealing with legacyl software, which often may be a vital source of readily available information which supports the operation of the manufacturing enterprise. The pragmatism and medium term relevance of the research study has promoted particular interest and collaboration from software manufacturers and industrial practitioners. Proof of concept studies have been carried out to implement and evaluate the developed mechanisms and software toolset

    Feasibility study of an Integrated Program for Aerospace vehicle Design (IPAD) Volume 7: IPAD benefits and impact

    Get PDF
    The potential benefits, impact and spinoff of IPAD technology are described. The benefits are projected from a flowtime and labor cost analysis of the design process and a study of the flowtime and labor cost savings being experienced with existing integrated systems. Benefits in terms of designer productivity, company effectiveness, and IPAD as a national resource are developed. A description is given of the potential impact of information handling as an IPAD technology, upon task and organization structure and people who use IPAD. Spinoff of IPAD technology to nonaerospace industries is discussed. The results of a personal survey made of aerospace, nonaerospace, government and university sources are given

    The role of virtual reality in built environment education

    Get PDF
    This study builds upon previous research on the integration of Virtual Reality (VR) within the built environment curriculum and aims to investigate the role of VR and three-dimensional (3D) computer modelling on learning and teaching in a school of the built environment. In order to achieve this aim, a number of academic experiences were analysed to explore the applicability and viability of 3D computer modelling and VR into built environment subject areas. Although two-dimensional (2D) representations have been greatly accepted by built environment professions and education, 3D computer representations and VR applications, offering interactivity and immersiveness, are not yet widely accepted. The study attempts to understand the values and challenges of integrating visualisation technologies into built environment teaching and investigates tutors’ perceptions, opinions and concerns with respect to these technologies. The study reports on the integration process and considers how 3D computer modelling and VR technologies can combine with, and extend, the existing range of learning and teaching methods appropriate to different disciplines and programme areas

    Past, present and future of information and knowledge sharing in the construction industry: Towards semantic service-based e-construction

    Get PDF
    The paper reviews product data technology initiatives in the construction sector and provides a synthesis of related ICT industry needs. A comparison between (a) the data centric characteristics of Product Data Technology (PDT) and (b) ontology with a focus on semantics, is given, highlighting the pros and cons of each approach. The paper advocates the migration from data-centric application integration to ontology-based business process support, and proposes inter-enterprise collaboration architectures and frameworks based on semantic services, underpinned by ontology-based knowledge structures. The paper discusses the main reasons behind the low industry take up of product data technology, and proposes a preliminary roadmap for the wide industry diffusion of the proposed approach. In this respect, the paper stresses the value of adopting alliance-based modes of operation
    corecore