11,097 research outputs found

    Implicitization of curves and (hyper)surfaces using predicted support

    Get PDF
    We reduce implicitization of rational planar parametric curves and (hyper)surfaces to linear algebra, by interpolating the coefficients of the implicit equation. For predicting the implicit support, we focus on methods that exploit input and output structure in the sense of sparse (or toric) elimination theory, namely by computing the Newton polytope of the implicit polynomial, via sparse resultant theory. Our algorithm works even in the presence of base points but, in this case, the implicit equation shall be obtained as a factor of the produced polynomial. We implement our methods on Maple, and some on Matlab as well, and study their numerical stability and efficiency on several classes of curves and surfaces. We apply our approach to approximate implicitization, and quantify the accuracy of the approximate output, which turns out to be satisfactory on all tested examples; we also relate our measures to Hausdorff distance. In building a square or rectangular matrix, an important issue is (over)sampling the given curve or surface: we conclude that unitary complexes offer the best tradeoff between speed and accuracy when numerical methods are employed, namely SVD, whereas for exact kernel computation random integers is the method of choice. We compare our prototype to existing software and find that it is rather competitive

    Discovering the roots: Uniform closure results for algebraic classes under factoring

    Full text link
    Newton iteration (NI) is an almost 350 years old recursive formula that approximates a simple root of a polynomial quite rapidly. We generalize it to a matrix recurrence (allRootsNI) that approximates all the roots simultaneously. In this form, the process yields a better circuit complexity in the case when the number of roots rr is small but the multiplicities are exponentially large. Our method sets up a linear system in rr unknowns and iteratively builds the roots as formal power series. For an algebraic circuit f(x1,,xn)f(x_1,\ldots,x_n) of size ss we prove that each factor has size at most a polynomial in: ss and the degree of the squarefree part of ff. Consequently, if f1f_1 is a 2Ω(n)2^{\Omega(n)}-hard polynomial then any nonzero multiple ifiei\prod_{i} f_i^{e_i} is equally hard for arbitrary positive eie_i's, assuming that ideg(fi)\sum_i \text{deg}(f_i) is at most 2O(n)2^{O(n)}. It is an old open question whether the class of poly(nn)-sized formulas (resp. algebraic branching programs) is closed under factoring. We show that given a polynomial ff of degree nO(1)n^{O(1)} and formula (resp. ABP) size nO(logn)n^{O(\log n)} we can find a similar size formula (resp. ABP) factor in randomized poly(nlognn^{\log n})-time. Consequently, if determinant requires nΩ(logn)n^{\Omega(\log n)} size formula, then the same can be said about any of its nonzero multiples. As part of our proofs, we identify a new property of multivariate polynomial factorization. We show that under a random linear transformation τ\tau, f(τx)f(\tau\overline{x}) completely factors via power series roots. Moreover, the factorization adapts well to circuit complexity analysis. This with allRootsNI are the techniques that help us make progress towards the old open problems, supplementing the large body of classical results and concepts in algebraic circuit factorization (eg. Zassenhaus, J.NT 1969, Kaltofen, STOC 1985-7 \& Burgisser, FOCS 2001).Comment: 33 Pages, No figure

    Improved Algorithms for Time Decay Streams

    Get PDF
    In the time-decay model for data streams, elements of an underlying data set arrive sequentially with the recently arrived elements being more important. A common approach for handling large data sets is to maintain a coreset, a succinct summary of the processed data that allows approximate recovery of a predetermined query. We provide a general framework that takes any offline-coreset and gives a time-decay coreset for polynomial time decay functions. We also consider the exponential time decay model for k-median clustering, where we provide a constant factor approximation algorithm that utilizes the online facility location algorithm. Our algorithm stores O(k log(h Delta)+h) points where h is the half-life of the decay function and Delta is the aspect ratio of the dataset. Our techniques extend to k-means clustering and M-estimators as well
    corecore