3,506 research outputs found

    Towards In-Air Gesture Control of Household Appliances with Limited Displays

    Get PDF
    Recent technologies allow us to interact with our homes in novel ways, such as using in-air gestures for control. However, gestures require good feedback and small appliances, like lighting controls and thermostats, have limited, or no, display capabilities. Our research explores how other output types can be used to give users feedback about their gestures, instead, allowing small devices to give useful feedback. We describe the Gesture Thermostat, a gesture-controlled thermostat dial which gives multimodal gesture feedback

    Towards usable and acceptable above-device interactions

    Get PDF
    Gestures above a mobile phone would let users interact with their devices quickly and easily from a distance. While both researchers and smartphone manufacturers develop new gesture sensing technologies, little is known about how best to design these gestures and interaction techniques. Our research looks at creating usable and socially acceptable above-device interaction techniques. We present an initial gesture collection, a preliminary evaluation of these gestures and some design recommendations. Our findings identify interesting areas for future research and will help designers create better gesture interfaces

    Do That, There: An Interaction Technique for Addressing In-Air Gesture Systems

    Get PDF
    When users want to interact with an in-air gesture system, they must first address it. This involves finding where to gesture so that their actions can be sensed, and how to direct their input towards that system so that they do not also affect others or cause unwanted effects. This is an important problem [6] which lacks a practical solution. We present an interaction technique which uses multimodal feedback to help users address in-air gesture systems. The feedback tells them how (“do that”) and where (“there”) to gesture, using light, audio and tactile displays. By doing that there, users can direct their input to the system they wish to interact with, in a place where their gestures can be sensed. We discuss the design of our technique and three experiments investigating its use, finding that users can “do that” well (93.2%–99.9%) while accurately (51mm–80mm) and quickly (3.7s) finding “there”

    Interaction techniques with novel multimodal feedback for addressing gesture-sensing systems

    Get PDF
    Users need to be able to address in-air gesture systems, which means finding where to perform gestures and how to direct them towards the intended system. This is necessary for input to be sensed correctly and without unintentionally affecting other systems. This thesis investigates novel interaction techniques which allow users to address gesture systems properly, helping them find where and how to gesture. It also investigates audio, tactile and interactive light displays for multimodal gesture feedback; these can be used by gesture systems with limited output capabilities (like mobile phones and small household controls), allowing the interaction techniques to be used by a variety of device types. It investigates tactile and interactive light displays in greater detail, as these are not as well understood as audio displays. Experiments 1 and 2 explored tactile feedback for gesture systems, comparing an ultrasound haptic display to wearable tactile displays at different body locations and investigating feedback designs. These experiments found that tactile feedback improves the user experience of gesturing by reassuring users that their movements are being sensed. Experiment 3 investigated interactive light displays for gesture systems, finding this novel display type effective for giving feedback and presenting information. It also found that interactive light feedback is enhanced by audio and tactile feedback. These feedback modalities were then used alongside audio feedback in two interaction techniques for addressing gesture systems: sensor strength feedback and rhythmic gestures. Sensor strength feedback is multimodal feedback that tells users how well they can be sensed, encouraging them to find where to gesture through active exploration. Experiment 4 found that they can do this with 51mm accuracy, with combinations of audio and interactive light feedback leading to the best performance. Rhythmic gestures are continuously repeated gesture movements which can be used to direct input. Experiment 5 investigated the usability of this technique, finding that users can match rhythmic gestures well and with ease. Finally, these interaction techniques were combined, resulting in a new single interaction for addressing gesture systems. Using this interaction, users could direct their input with rhythmic gestures while using the sensor strength feedback to find a good location for addressing the system. Experiment 6 studied the effectiveness and usability of this technique, as well as the design space for combining the two types of feedback. It found that this interaction was successful, with users matching 99.9% of rhythmic gestures, with 80mm accuracy from target points. The findings show that gesture systems could successfully use this interaction technique to allow users to address them. Novel design recommendations for using rhythmic gestures and sensor strength feedback were created, informed by the experiment findings

    Do That, There: An Interaction Technique for Addressing In-Air Gesture Systems

    Get PDF
    When users want to interact with an in-air gesture system, they must first address it. This involves finding where to gesture so that their actions can be sensed, and how to direct their input towards that system so that they do not also affect others or cause unwanted effects. This is an important problem [6] which lacks a practical solution. We present an interaction technique which uses multimodal feedback to help users address in-air gesture systems. The feedback tells them how (“do that”) and where (“there”) to gesture, using light, audio and tactile displays. By doing that there, users can direct their input to the system they wish to interact with, in a place where their gestures can be sensed. We discuss the design of our technique and three experiments investigating its use, finding that users can “do that” well (93.2%–99.9%) while accurately (51mm–80mm) and quickly (3.7s) finding “there”

    TechNews digests: Jan - Mar 2010

    Get PDF
    TechNews is a technology, news and analysis service aimed at anyone in the education sector keen to stay informed about technology developments, trends and issues. TechNews focuses on emerging technologies and other technology news. TechNews service : digests september 2004 till May 2010 Analysis pieces and News combined publish every 2 to 3 month

    Context-aware gestural interaction in the smart environments of the ubiquitous computing era

    Get PDF
    A thesis submitted to the University of Bedfordshire in partial fulfilment of the requirements for the degree of Doctor of PhilosophyTechnology is becoming pervasive and the current interfaces are not adequate for the interaction with the smart environments of the ubiquitous computing era. Recently, researchers have started to address this issue introducing the concept of natural user interface, which is mainly based on gestural interactions. Many issues are still open in this emerging domain and, in particular, there is a lack of common guidelines for coherent implementation of gestural interfaces. This research investigates gestural interactions between humans and smart environments. It proposes a novel framework for the high-level organization of the context information. The framework is conceived to provide the support for a novel approach using functional gestures to reduce the gesture ambiguity and the number of gestures in taxonomies and improve the usability. In order to validate this framework, a proof-of-concept has been developed. A prototype has been developed by implementing a novel method for the view-invariant recognition of deictic and dynamic gestures. Tests have been conducted to assess the gesture recognition accuracy and the usability of the interfaces developed following the proposed framework. The results show that the method provides optimal gesture recognition from very different view-points whilst the usability tests have yielded high scores. Further investigation on the context information has been performed tackling the problem of user status. It is intended as human activity and a technique based on an innovative application of electromyography is proposed. The tests show that the proposed technique has achieved good activity recognition accuracy. The context is treated also as system status. In ubiquitous computing, the system can adopt different paradigms: wearable, environmental and pervasive. A novel paradigm, called synergistic paradigm, is presented combining the advantages of the wearable and environmental paradigms. Moreover, it augments the interaction possibilities of the user and ensures better gesture recognition accuracy than with the other paradigms

    An aesthetics of touch: investigating the language of design relating to form

    Get PDF
    How well can designers communicate qualities of touch? This paper presents evidence that they have some capability to do so, much of which appears to have been learned, but at present make limited use of such language. Interviews with graduate designer-makers suggest that they are aware of and value the importance of touch and materiality in their work, but lack a vocabulary to fully relate to their detailed explanations of other aspects such as their intent or selection of materials. We believe that more attention should be paid to the verbal dialogue that happens in the design process, particularly as other researchers show that even making-based learning also has a strong verbal element to it. However, verbal language alone does not appear to be adequate for a comprehensive language of touch. Graduate designers-makers’ descriptive practices combined non-verbal manipulation within verbal accounts. We thus argue that haptic vocabularies do not simply describe material qualities, but rather are situated competences that physically demonstrate the presence of haptic qualities. Such competencies are more important than groups of verbal vocabularies in isolation. Design support for developing and extending haptic competences must take this wide range of considerations into account to comprehensively improve designers’ capabilities

    FSEA 2014 – Proceedings of the AVI 2014 Workshop on Fostering Smart Energy Applications through Advanced Visual Interfaces

    Get PDF
    It is with great pleasure that we welcome you to FSEA 2014, the AVI 2014 workshop on Fostering Smart Energy Applications through Advanced Visual Interfaces. This workshop focuses on advanced interaction, interface, and visualization techniques for energy-related applications, tools, and services. It brings together researchers and practitioners from a diverse range of background, including interaction design, human-computer interaction, visualization, computer games, and other fields concerned with the development of advanced visual interfaces for smart energy applications. FSEA 2014 is the result of the efforts of many people involved in its organization, including our programme committee, and others who have assisted us in putting this workshop together

    Space Journey: Encouraging astronomy education and space exploration through an interactive experiential design installation of an astronaut training program

    Get PDF
    Space journey is an interactive experiential design installation that explores the field of Astronomy and astronaut training programs, to encourage younger generations to follow scientific and astronomy education. This project explored, the boundaries of the interactive user experience along with projection design to learn, discover and experience using a gesture-based interface creating an immersive experience. Astronomy as a scientific field, has always had a significant impact on the worldview, it explores the wonders of the universe and its countless celestial objects, through its multiples researches, it has been used to solve unknown questions about the evolution and it has been the propeller of the development of technologies that we know and used today. But while there are a lot of advance in technology, there are still many unanswered questions in the field of astronomy. Before going into space, astronauts must endure many hours of training and preparation, where they learn about space, science and technology. Encouraging astronomy education in the younger generation could not only improve the skills, motivation and knowledge to train like an astronaut, but could impact positively in the world by inspiring new scientist and amateurs to keep exploring and researching the universe and through them, science and technology could inevitably evolve. This project presents different mind and body challenges that teach and entertain the users on how to train like an astronaut. By playing these challenges, the users gain different skills that are useful for astronauts in space. While playing, the users explore the wonders of the universe, learning not only about astronauts but space in general
    • 

    corecore