953 research outputs found

    Potential Errors and Test Assessment in Software Product Line Engineering

    Full text link
    Software product lines (SPL) are a method for the development of variant-rich software systems. Compared to non-variable systems, testing SPLs is extensive due to an increasingly amount of possible products. Different approaches exist for testing SPLs, but there is less research for assessing the quality of these tests by means of error detection capability. Such test assessment is based on error injection into correct version of the system under test. However to our knowledge, potential errors in SPL engineering have never been systematically identified before. This article presents an overview over existing paradigms for specifying software product lines and the errors that can occur during the respective specification processes. For assessment of test quality, we leverage mutation testing techniques to SPL engineering and implement the identified errors as mutation operators. This allows us to run existing tests against defective products for the purpose of test assessment. From the results, we draw conclusions about the error-proneness of the surveyed SPL design paradigms and how quality of SPL tests can be improved.Comment: In Proceedings MBT 2015, arXiv:1504.0192

    Modellbasiertes Regressionstesten von Varianten und Variantenversionen

    Get PDF
    The quality assurance of software product lines (SPL) achieved via testing is a crucial and challenging activity of SPL engineering. In general, the application of single-software testing techniques for SPL testing is not practical as it leads to the individual testing of a potentially vast number of variants. Testing each variant in isolation further results in redundant testing processes by means of redundant test-case executions due to the shared commonality. Existing techniques for SPL testing cope with those challenges, e.g., by identifying samples of variants to be tested. However, each variant is still tested separately without taking the explicit knowledge about the shared commonality and variability into account to reduce the overall testing effort. Furthermore, due to the increasing longevity of software systems, their development has to face software evolution. Hence, quality assurance has also to be ensured after SPL evolution by testing respective versions of variants. In this thesis, we tackle the challenges of testing redundancy as well as evolution by proposing a framework for model-based regression testing of evolving SPLs. The framework facilitates efficient incremental testing of variants and versions of variants by exploiting the commonality and reuse potential of test artifacts and test results. Our contribution is divided into three parts. First, we propose a test-modeling formalism capturing the variability and version information of evolving SPLs in an integrated fashion. The formalism builds the basis for automatic derivation of reusable test cases and for the application of change impact analysis to guide retest test selection. Second, we introduce two techniques for incremental change impact analysis to identify (1) changing execution dependencies to be retested between subsequently tested variants and versions of variants, and (2) the impact of an evolution step to the variant set in terms of modified, new and unchanged versions of variants. Third, we define a coverage-driven retest test selection based on a new retest coverage criterion that incorporates the results of the change impact analysis. The retest test selection facilitates the reduction of redundantly executed test cases during incremental testing of variants and versions of variants. The framework is prototypically implemented and evaluated by means of three evolving SPLs showing that it achieves a reduction of the overall effort for testing evolving SPLs.Testen ist ein wichtiger Bestandteil der Entwicklung von Softwareproduktlinien (SPL). Aufgrund der potentiell sehr großen Anzahl an Varianten einer SPL ist deren individueller Test im Allgemeinen nicht praktikabel und resultiert zudem in redundanten Testfallausführungen, die durch die Gemeinsamkeiten zwischen Varianten entstehen. Existierende SPL-Testansätze adressieren diese Herausforderungen z.B. durch die Reduktion der Anzahl an zu testenden Varianten. Jedoch wird weiterhin jede Variante unabhängig getestet, ohne dabei das Wissen über Gemeinsamkeiten und Variabilität auszunutzen, um den Testaufwand zu reduzieren. Des Weiteren muss sich die SPL-Entwicklung mit der Evolution von Software auseinandersetzen. Dies birgt weitere Herausforderungen für das SPL-Testen, da nicht nur für Varianten sondern auch für ihre Versionen die Qualität sichergestellt werden muss. In dieser Arbeit stellen wir ein Framework für das modellbasierte Regressionstesten von evolvierenden SPL vor, das die Herausforderungen des redundanten Testens und der Software-Evolution adressiert. Das Framework vereint Testmodellierung, Änderungsauswirkungsanalyse und automatische Testfallselektion, um einen inkrementellen Testprozess zu definieren, der Varianten und Variantenversionen unter Ausnutzung des Wissens über gemeinsame Funktionalität und dem Wiederverwendungspotential von Testartefakten und -resultaten effizient testet. Für die Testmodellierung entwickeln wir einen Ansatz, der Variabilitäts- sowie Versionsinformation von evolvierenden SPL gleichermaßen für die Modellierung einbezieht. Für die Änderungsauswirkungsanalyse definieren wir zwei Techniken, um zum einen Änderungen in Ausführungsabhängigkeiten zwischen zu testenden Varianten und ihren Versionen zu identifizieren und zum anderen die Auswirkungen eines Evolutionsschrittes auf die Variantenmenge zu bestimmen und zu klassifizieren. Für die Testfallselektion schlagen wir ein Abdeckungskriterium vor, das die Resultate der Auswirkungsanalyse einbezieht, um automatisierte Entscheidungen über einen Wiederholungstest von wiederverwendbaren Testfällen durchzuführen. Die abdeckungsgetriebene Testfallselektion ermöglicht somit die Reduktion der redundanten Testfallausführungen während des inkrementellen Testens von Varianten und Variantenversionen. Das Framework ist prototypisch implementiert und anhand von drei evolvierenden SPL evaluiert. Die Resultate zeigen, dass eine Aufwandsreduktion für das Testen evolvierender SPL erreicht wird

    Simulation-based testing of highly configurable cyber-physical systems: automation, optimization and debugging

    Get PDF
    Sistema Ziber-Fisikoek sistema ziber digitalak sistema fisikoekin uztartzen dituzte. Sistema hauen aldakortasuna handitzen ari da erabiltzaileen hainbat behar betetzeko. Ondorioz, sistema ziber-fisikoa aldakorrak edota produktu lerroak ari dira garatzen eta sistema hauek milaka edo milioika konfiguraziotan konfiguratu daitezke. Sistema ziber-fisiko aldakorren test eta balidazioa prozesua garestia da, batez ere probatu beharreko konfigurazio kopuruaren ondorioz. Konfigurazio kopuru altuak sistemaren prototipo bat erabiltzea ezinezkoa egiten du. Horregatik, sistema ziber-fisiko aldagarriak simulazio modeloak erabilita probatzen dira. Hala ere, simulazio bidez sistema ziber-fisikoak probatzea erronka izaten jarraitzen du. Hasteko, simulazio denbora altua izaten da normalki, software-az aparte, sistema fisikoa simulatu behar delako. Sistema fisiko hau normalean modelo matematiko konplexuen bitartez modelatzen da, konputazionalki garestia delarik. Jarraitzeko, sistema ziber-fisikoek ingeniaritzaren domeinu ezberdinak dituzte tartean, adibidez mekanika edo elektronika. Domeinu bakoitzak bere simulazio erremienta erabiltzen du, eta erremienta guzti hauek interkonektatzeko ko-simulazioa erabiltzen da. Nahiz eta ko-simulazioa abantaila bat izan ematen duen flexibilitateagatik, simulagailu ezberdinen erabilerak simulazio denbora handiagotzen du. Azkenik, sistema ziber-fisikoak simulaziopean probatzean, probak maila ezberdinetan egin behar dira (adb., Model, Software eta Hardware-in-the-Loop mailak), eta honek, proba-kasuak exekutatzeko denbora handitzen du. Tesi honen helburua sistema ziber-fisiko aldakorren test jardunbideak hobetzea da, horretarako automatizazio, optimizazio eta arazketa metodoak proposatzen ditu. Automatizazioari dagokionez, lehenengo, erremienta-bidezko metodologia bat proposatzen da. Metodologia hau test sistema instantziak automatikoki sortzeko gai da, test sistema hauek sistema ziber-fisiko aldagarrien konfigurazioak automatikoki probatzeko gai dira (adb., test orakuluen bitartez). Bigarren, test frogak automatikoki sortzeko planteamendu bat proposatzen da helburu anitzeko bilaketa algoritmoak erabilita. Optimizazioari dagokionez, test frogen aukeraketarako planteamendu bat eta test frogen priorizaziorako beste planteamendu bat proposatzen dira, biak bilaketa alix goritmoak erabiliz, sistema ziber-fisiko aldakorrak test maila ezberdinetan probatzeko helburuarekin. Arazketari dagokionez, “espektroan oinarritutako falten lokalizazioa” izeneko teknika bat produktu lerroen testuingurura adaptatu da, eta faltak isolatzeko metodo bat proposatzen da. Honek, falta ezberdinak lokalizatzea errezten du ez bakarrik sistema ziber-fisiko aldakorretan, baizik eta edozein produktu lerrotan non “feature model” delako modeloak erabiltzen diren aldakortasuna kudeatzeko.Los sistemas cyber-físicos (CPSs) integran tecnologías digitales con procesos físicos. La variabilidad de estos sistemas está creciendo para responder a la demanda de diferentes clientes. Como consecuencia de ello, los CPSs están volviéndose configurables e incluso líneas de producto, lo que significa que pueden ser configurados en miles y millones de configuraciones. El testeo de sistemas cyber-físicos configurables es un proceso costoso, en general debido a la cantidad de configuraciones que han de ser testeadas. El número de configuraciones a testear hace imposible el uso de un prototipo del sistema. Por ello, los sistemas CPSs configurables están siendo testeadas utilizando modelos de simulación. Sin embargo, el testeo de sistemas cyber-físicos bajo simulación sigue siendo un reto. Primero, el tiempo de simulación es normalmente largo, ya que, además del software, la capa física del CPS ha de ser testeada. Esta capa física es típicamente modelada con modelos matemáticos complejos, lo cual es computacionalmente caro. Segundo, los sistemas cyber-físicos implican el uso de diferentes dominios de la ingeniería, como por ejemplo la mecánica o la electrónica. Por ello, para interconectar diferentes herramientas de modelado y simulación hace falta el uso de la co-simulación. A pesar de que la co-simulación es una ventaja en términos de flexibilidad para los ingenieros, el uso de diferentes simuladores hace que el tiempo de simulación sea más largo. Por último, al testear sistemas cyberfísicos haciendo uso de simulación, existen diferentes niveles (p.ej., Model, Software y Hardware-in-the-Loop), lo cual incrementa el tiempo para ejecutar casos de test. Esta tesis tiene como objetivo avanzar en la práctica actual del testeo de sistemas cyber-físicos configurables, proponiendo métodos para la automatización, optimización y depuración. En cuanto a la automatización, primero, se propone una metodología soportada por una herramienta para generar automáticamente instancias de sistemas de test que permiten testear automáticamente configuraciones del sistema CPS configurable (p.ej., haciendo uso de oráculos de test). Segundo, se propone un enfoque para generación de casos de test basado en algoritmos de búsqueda multiobjetivo, los cuales generan un conjunto de casos de test. En cuanto a la optimización, se propone un enfoque para selección y otro para priorización de casos de test, ambos basados en algoritmos de búsqueda, de cara a testear eficientemente sistemas cyberfísicos configurables en diferentes niveles de test. En cuanto a la depuración, se adapta una técnica llamada “Localización de Fallos Basada en Espectro” al contexto de líneas de productos y proponemos un método de aislamiento de fallos. Esto permite localizar bugs no solo en sistemas cyber-físicos configurables sino también en cualquier línea de producto donde se utilicen modelos de características para gestionar la variabilidad.Cyber-Physical Systems (CPSs) integrate digital cyber technologies with physical processes. The variability of these systems is increasing in order to give solution to the different customers demands. As a result, CPSs are becoming configurable or even product lines, which means that they can be set into thousands or millions of configurations. Testing configurable CPSs is a time consuming process, mainly due to the large amount of configurations that need to be tested. The large amount of configurations that need to be tested makes it infeasible to use a prototype of the system. As a result, configurable CPSs are being tested using simulation. However, testing CPSs under simulation is still challenging. First, the simulation time is usually long, since apart of the software, the physical layer needs to be simulated. This physical layer is typically modeled with complex mathematical models, which is computationally very costly. Second, CPSs involve different domains, such as, mechanical and electrical. Engineers of different domains typically employ different tools for modeling their subsystems. As a result, co-simulation is being employed to interconnect different modeling and simulation tools. Despite co-simulation being an advantage in terms of engineers flexibility, the use of different simulation tools makes the simulation time longer. Lastly, when testing CPSs employing simulation, different test levels exist (i.e., Model, Software and Hardware-in-the-Loop), what increases the time for executing test cases. This thesis aims at advancing the current practice on testing configurable CPSs by proposing methods for automation, optimization and debugging. Regarding automation, first, we propose a tool supported methodology to automatically generate test system instances that permit automatically testing configurations of the configurable CPS (e.g., by employing test oracles). Second, we propose a test case generation approach based on multi-objective search algorithms that generate cost-effective test suites. As for optimization, we propose a test case selection and a test case prioritization approach, both of them based on search algorithms, to cost-effectively test configurable CPSs at different test levels. Regarding debugging, we adapt a technique named Spectrum-Based Fault Localization to the product line engineering context and propose a fault isolation method. This permits localizing bugs not only in configurable CPSs but also in any product line where feature models are employed to model variability

    Increasing Software Reliability using Mutation Testing and Machine Learning

    Get PDF
    Mutation testing is a type of software testing proposed in the 1970s where program statements are deliberately changed to introduce simple errors so that test cases can be validated to determine if they can detect the errors. The goal of mutation testing was to reduce complex program errors by preventing the related simple errors. Test cases are executed against the mutant code to determine if one fails, detects the error and ensures the program is correct. One major issue with this type of testing was it became intensive computationally to generate and test all possible mutations for complex programs. This dissertation used machine learning for the selection of mutation operators that reduced the computational cost of testing and improved test suite effectiveness. The goals were to produce mutations that were more resistant to test cases, improve test case evaluation, validate then improve the test suite’s effectiveness, realize cost reductions by generating fewer mutations for testing and improving software reliability by detecting more errors. To accomplish these goals, experiments were conducted using sample programs to determine how well the reinforcement learning based algorithm performed with one live mutation, multiple live mutations and no live mutations. The experiments, measured by mutation score, were used to update the algorithm and improved accuracy for predictions. The performance was then evaluated on multiple processor computers. One key result from this research was the development of a reinforcement algorithm to identify mutation operator combinations that resulted in live mutants. During experimentation, the reinforcement learning algorithm identified the optimal mutation operator selections for various programs and test suite scenarios, as well as determined that by using parallel processing and multiple cores the reinforcement learning process for mutation operator selection was practical. With reinforcement learning the mutation operators utilized were reduced by 50 – 100%.In conclusion, these improvements created a ‘live’ mutation testing process that evaluated various mutation operators and generated mutants to perform real-time mutation testing while dynamically prioritizing mutation operator recommendations. This has enhanced the software developer’s ability to improve testing processes. The contributions of this paper’s research supported the shift-left testing approach, where testing is performed earlier in the software development cycle when error resolution is less costly
    corecore