342 research outputs found

    Propagation of thermal excitations in a cluster of vortices in superfluid 3He-B

    Full text link
    We describe the first measurement on Andreev scattering of thermal excitations from a vortex configuration with known density, spatial extent, and orientations in 3He-B superfluid. The heat flow from a blackbody radiator in equilibrium rotation at constant angular velocity is measured with two quartz tuning fork oscillators. One oscillator creates a controllable density of excitations at 0.2Tc base temperature and the other records the thermal response. The results are compared to numerical calculations of ballistic propagation of thermal quasiparticles through a cluster of rectilinear vortices.Comment: 6 pages, 4 figure

    Dynamical Equilibration Across a Quenched Phase Transition in a Trapped Quantum Gas

    Full text link
    The formation of an equilibrium quantum state from an uncorrelated thermal one through the dynamical crossing of a phase transition is a central question of non-equilibrium many-body physics. During such crossing, the system breaks its symmetry by establishing numerous uncorrelated regions separated by spontaneously-generated defects, whose emergence obeys a universal scaling law with the quench duration. Much less is known about the ensuing re-equilibrating or "coarse-graining" stage, which is governed by the evolution and interactions of such defects under system-specific and external constraints. In this work we perform a detailed numerical characterization of the entire non-equilibrium process, addressing subtle issues in condensate growth dynamics and demonstrating the quench-induced decoupling of number and coherence growth during the re-equilibration process. Our unique visualizations not only reproduce experimental measurements in the relevant regimes, but also provide valuable information in currently experimentally-inaccessible regimes.Comment: Supplementary Movie Previes: SM-Movie-1: https://youtu.be/3q7-CvuBylg SM-Movie-2: https://youtu.be/-Gymaiv9rC0 SM-Movie-3: https://youtu.be/w-O2SPiw3nE SM-Movie-4: https://youtu.be/P4xGyr4dwK

    Density Functional Theory of doped superfluid liquid helium and nanodroplets

    Full text link
    During the last decade, density function theory (DFT) in its static and dynamic time dependent forms, has emerged as a powerful tool to describe the structure and dynamics of doped liquid helium and droplets. In this review, we summarize the activity carried out in this field within the DFT framework since the publication of the previous review article on this subject [M. Barranco et al., J. Low Temp. Phys. 142, 1 (2006)]. Furthermore, a comprehensive presentation of the actual implementations of helium DFT is given, which have not been discussed in the individual articles or are scattered in the existing literature. This is an Accepted Manuscript of an article published on August 2, 2017 by Taylor & Francis Group in Int. Rev. Phys. Chem. 36, 621 (2017), available online: http://dx.doi.org/10.1080/0144235X.2017.1351672Comment: 113 pages, 42 figure

    In situ imaging of vortices in Bose-Einstein condensates

    Get PDF
    Laboratory observations of vortex dynamics in Bose-Einstein condensates (BECs) are essential for determination of many aspects of superfluid dynamics in these systems. We present a novel application of dark-field imaging that enables \texttt{\it in situ} detection of two-dimensional vortex distributions in single-component BECs, a step towards real-time measurements of complex two-dimensional vortex dynamics within a single BEC. By rotating a 87^{87}Rb BEC in a magnetic trap, we generate a triangular lattice of vortex cores in the BEC, with core diameters on the order of 400 nm and cores separated by approximately 9 ÎĽ\mum. We have experimentally confirmed that the positions of the vortex cores can be determined without the need for ballistic expansion of the BEC.Comment: 5 pages, 4 figure
    • …
    corecore