30,031 research outputs found

    Supporting active and healthy aging with advanced robotics integrated in smart environment

    Get PDF
    The technological advances in the robotic and ICT fields represent an effective solution to address specific societal problems to support ageing and independent life. One of the key factors for these technologies is the integration of service robotics for optimising social services and improving quality of life of the elderly population. This chapter aims to underline the barriers of the state of the art, furthermore the authors present their concrete experiences to overcome these barriers gained at the RoboTown Living Lab of Scuola Superiore Sant'Anna within past and current projects. They analyse and discuss the results in order to give recommendations based on their experiences. Furthermore, this work highlights the trend of development from stand-alone solutions to cloud computing architecture, describing the future research directions

    MOSAIC roadmap for mobile collaborative work related to health and wellbeing.

    Get PDF
    The objective of the MOSAIC project is to accelerate innovation in Mobile Worker Support Environments. For that purpose MOSAIC develops visions and illustrative scenarios for future collaborative workspaces involving mobile and location-aware working. Analysis of the scenarios is input to the process of road mapping with the purpose of developing strategies for R&D leading to deployment of innovative mobile work technologies and applications across different domains. One of the application domains where MOSAIC is active is health and wellbeing. This paper builds on another paper submitted to this same conference, which presents and discusses health care and wellbeing specific scenarios. The aim is to present an early form of a roadmap for validation

    Design of Cloud Robotic Services for Senior Citizens to Improve Independent Living and Personal Health Management

    Get PDF
    A cloud robotics solution was designed and initially tested with a mobile robotic platform and a smart environment, in order to provide health-care management services to senior citizens and improve their independent living. The solution was evaluated in terms of Quality of Service (QoS) and tested in the realistic scenario of the DomoCasa Living Lab, Peccioli, Italy. In particular, a medication reminding service, a remote home monitoring and a user indoor localization algorithm were outsourced in the cloud and provided to the robots, users and carers. The system acquired data from a smart environment and addressed the robot to the user for service delivery. Experiments showed a service's Reliability of Response at least of the 0.04 % and a Time of Response of the same order of magnitude of the processing time required by the user localization algorithm

    Include 2011 : The role of inclusive design in making social innovation happen.

    Get PDF
    Include is the biennial conference held at the RCA and hosted by the Helen Hamlyn Centre for Design. The event is directed by Jo-Anne Bichard and attracts an international delegation

    Ecosystemic Evolution Feeded by Smart Systems

    Get PDF
    Information Society is advancing along a route of ecosystemic evolution. ICT and Internet advancements, together with the progression of the systemic approach for enhancement and application of Smart Systems, are grounding such an evolution. The needed approach is therefore expected to evolve by increasingly fitting into the basic requirements of a significant general enhancement of human and social well-being, within all spheres of life (public, private, professional). This implies enhancing and exploiting the net-living virtual space, to make it a virtuous beneficial integration of the real-life space. Meanwhile, contextual evolution of smart cities is aiming at strongly empowering that ecosystemic approach by enhancing and diffusing net-living benefits over our own lived territory, while also incisively targeting a new stable socio-economic local development, according to social, ecological, and economic sustainability requirements. This territorial focus matches with a new glocal vision, which enables a more effective diffusion of benefits in terms of well-being, thus moderating the current global vision primarily fed by a global-scale market development view. Basic technological advancements have thus to be pursued at the system-level. They include system architecting for virtualization of functions, data integration and sharing, flexible basic service composition, and end-service personalization viability, for the operation and interoperation of smart systems, supporting effective net-living advancements in all application fields. Increasing and basically mandatory importance must also be increasingly reserved for human–technical and social–technical factors, as well as to the associated need of empowering the cross-disciplinary approach for related research and innovation. The prospected eco-systemic impact also implies a social pro-active participation, as well as coping with possible negative effects of net-living in terms of social exclusion and isolation, which require incisive actions for a conformal socio-cultural development. In this concern, speed, continuity, and expected long-term duration of innovation processes, pushed by basic technological advancements, make ecosystemic requirements stricter. This evolution requires also a new approach, targeting development of the needed basic and vocational education for net-living, which is to be considered as an engine for the development of the related ‘new living know-how’, as well as of the conformal ‘new making know-how’

    State of the art on ethical, legal, and social issues linked to audio- and video-based AAL solutions - Uploaded on December 29, 2021

    Full text link
    Ambient assisted living (AAL) technologies are increasingly presented and sold as essential smart additions to daily life and home environments that will radically transform the healthcare and wellness markets of the future. An ethical approach and a thorough understanding of all ethics in surveillance/monitoring architectures are therefore pressing. AAL poses many ethical challenges raising questions that will affect immediate acceptance and long-term usage. Furthermore, ethical issues emerge from social inequalities and their potential exacerbation by AAL, accentuating the existing access gap between high-income countries (HIC) and low and middle-income countries (LMIC). Legal aspects mainly refer to the adherence to existing legal frameworks and cover issues related to product safety, data protection, cybersecurity, intellectual property, and access to data by public, private, and government bodies. Successful privacy-friendly AAL applications are needed, as the pressure to bring Internet of Things (IoT) devices and ones equipped with artificial intelligence (AI) quickly to market cannot overlook the fact that the environments in which AAL will operate are mostly private (e.g., the home). The social issues focus on the impact of AAL technologies before and after their adoption. Future AAL technologies need to consider all aspects of equality such as gender, race, age and social disadvantages and avoid increasing loneliness and isolation among, e.g. older and frail people. Finally, the current power asymmetries between the target and general populations should not be underestimated nor should the discrepant needs and motivations of the target group and those developing and deploying AAL systems. Whilst AAL technologies provide promising solutions for the health and social care challenges, they are not exempt from ethical, legal and social issues (ELSI). A set of ELSI guidelines is needed to integrate these factors at the research and development stage

    State of the art on ethical, legal, and social issues linked to audio- and videobased AAL solutions

    Get PDF
    Working Group 1. Social responsibility: Ethical, legal, social, data protection and privacy issuesAbstract Ambient assisted living (AAL) technologies are increasingly presented and sold as essential smart additions to daily life and home environments that will radically transform the healthcare and wellness markets of the future. An ethical approach and a thorough understanding of all ethics in surveillance/monitoring architectures are therefore pressing. AAL poses many ethical challenges raising questions that will affect immediate acceptance and long-term usage. Furthermore, ethical issues emerge from social inequalities and their potential exacerbation by AAL, accentuating the existing access gap between high-income countries (HIC) and low and middle-income countries (LMIC). Legal aspects mainly refer to the adherence to existing legal frameworks and cover issues related to product safety, data protection, cybersecurity, intellectual property, and access to data by public, private, and government bodies. Successful privacy-friendly AAL applications are needed, as the pressure to bring Internet of Things (IoT) devices and ones equipped with artificial intelligence (AI) quickly to market cannot overlook the fact that the environments in which AAL will operate are mostly private (e.g., the home). The social issues focus on the impact of AAL technologies before and after their adoption. Future AAL technologies need to consider all aspects of equality such as gender, race, age and social disadvantages and avoid increasing loneliness and isolation among, e.g. older and frail people. Finally, the current power asymmetries between the target and general populations should not be underestimated nor should the discrepant needs and motivations of the target group and those developing and deploying AAL systems. Whilst AAL technologies provide promising solutions for the health and social care challenges, they are not exempt from ethical, legal and social issues (ELSI). A set of ELSI guidelines is needed to integrate these factors at the research and development stage. Keywords Ethical principles, Privacy, Assistive Living Technologies, Privacy by Design, General Data Protection Regulation.publishedVersio

    Report on SHAFE policies, strategies and funding

    Full text link
    The objective of Working Group (WG) 4 of the COST Action NET4Age-Friendly is to examine existing policies, advocacy, and funding opportunities and to build up relations with policy makers and funding organisations. Also, to synthesize and improve existing knowledge and models to develop from effective business and evaluation models, as well as to guarantee quality and education, proper dissemination and ensure the future of the Action. The Working Group further aims to enable capacity building to improve interdisciplinary participation, to promote knowledge exchange and to foster a cross-European interdisciplinary research capacity, to improve cooperation and co-creation with cross-sectors stakeholders and to introduce and educate students SHAFE implementation and sustainability (CB01, CB03, CB04, CB05). To enable the achievement of the objectives of Working Group 4, the Leader of the Working Group, the Chair and Vice-Chair, in close cooperation with the Science Communication Coordinator, developed a template (see annex 1) to map the current state of SHAFE policies, funding opportunities and networking in the COST member countries of the Action. On invitation, the Working Group lead received contributions from 37 countries, in a total of 85 Action members. The contributions provide an overview of the diversity of SHAFE policies and opportunities in Europe and beyond. These were not edited or revised and are a result of the main areas of expertise and knowledge of the contributors; thus, gaps in areas or content are possible and these shall be further explored in the following works and reports of this WG. But this preliminary mapping is of huge importance to proceed with the WG activities. In the following chapters, an introduction on the need of SHAFE policies is presented, followed by a summary of the main approaches to be pursued for the next period of work. The deliverable finishes with the opportunities of capacity building, networking and funding that will be relevant to undertake within the frame of Working Group 4 and the total COST Action. The total of country contributions is presented in the annex of this deliverable
    corecore