95 research outputs found

    Searching Spontaneous Conversational Speech:Proceedings of ACM SIGIR Workshop (SSCS2008)

    Get PDF

    Phoneme-based Video Indexing Using Phonetic Disparity Search

    Get PDF
    This dissertation presents and evaluates a method to the video indexing problem by investigating a categorization method that transcribes audio content through Automatic Speech Recognition (ASR) combined with Dynamic Contextualization (DC), Phonetic Disparity Search (PDS) and Metaphone indexation. The suggested approach applies genome pattern matching algorithms with computational summarization to build a database infrastructure that provides an indexed summary of the original audio content. PDS complements the contextual phoneme indexing approach by optimizing topic seek performance and accuracy in large video content structures. A prototype was established to translate news broadcast video into text and phonemes automatically by using ASR utterance conversions. Each phonetic utterance extraction was then categorized, converted to Metaphones, and stored in a repository with contextual topical information attached and indexed for posterior search analysis. Following the original design strategy, a custom parallel interface was built to measure the capabilities of dissimilar phonetic queries and provide an interface for result analysis. The postulated solution provides evidence of a superior topic matching when compared to traditional word and phoneme search methods. Experimental results demonstrate that PDS can be 3.7% better than the same phoneme query, Metaphone search proved to be 154.6% better than the same phoneme seek and 68.1 % better than the equivalent word search

    Cloud-based Automatic Speech Recognition Systems for Southeast Asian Languages

    Full text link
    This paper provides an overall introduction of our Automatic Speech Recognition (ASR) systems for Southeast Asian languages. As not much existing work has been carried out on such regional languages, a few difficulties should be addressed before building the systems: limitation on speech and text resources, lack of linguistic knowledge, etc. This work takes Bahasa Indonesia and Thai as examples to illustrate the strategies of collecting various resources required for building ASR systems.Comment: Published by the 2017 IEEE International Conference on Orange Technologies (ICOT 2017

    Modularity and Neural Integration in Large-Vocabulary Continuous Speech Recognition

    Get PDF
    This Thesis tackles the problems of modularity in Large-Vocabulary Continuous Speech Recognition with use of Neural Network

    Keskusteluavustimen kehittäminen kuulovammaisia varten automaattista puheentunnistusta käyttäen

    Get PDF
    Understanding and participating in conversations has been reported as one of the biggest challenges hearing impaired people face in their daily lives. These communication problems have been shown to have wide-ranging negative consequences, affecting their quality of life and the opportunities available to them in education and employment. A conversational assistance application was investigated to alleviate these problems. The application uses automatic speech recognition technology to provide real-time speech-to-text transcriptions to the user, with the goal of helping deaf and hard of hearing persons in conversational situations. To validate the method and investigate its usefulness, a prototype application was developed for testing purposes using open-source software. A user test was designed and performed with test participants representing the target user group. The results indicate that the Conversation Assistant method is valid, meaning it can help the hearing impaired to follow and participate in conversational situations. Speech recognition accuracy, especially in noisy environments, was identified as the primary target for further development for increased usefulness of the application. Conversely, recognition speed was deemed to be sufficient and already surpass the transcription speed of human transcribers.Keskustelupuheen ymmärtäminen ja keskusteluihin osallistuminen on raportoitu yhdeksi suurimmista haasteista, joita kuulovammaiset kohtaavat jokapäiväisessä elämässään. Näillä viestintäongelmilla on osoitettu olevan laaja-alaisia negatiivisia vaikutuksia, jotka heijastuvat elämänlaatuun ja heikentävät kuulovammaisten yhdenvertaisia osallistumismahdollisuuksia opiskeluun ja työelämään. Työssä kehitettiin ja arvioitiin apusovellusta keskustelupuheen ymmärtämisen ja keskusteluihin osallistumisen helpottamiseksi. Sovellus käyttää automaattista puheentunnistusta reaaliaikaiseen puheen tekstittämiseen kuuroja ja huonokuuloisia varten. Menetelmän toimivuuden vahvistamiseksi ja sen hyödyllisyyden tutkimiseksi siitä kehitettiin prototyyppisovellus käyttäjätestausta varten avointa lähdekoodia hyödyntäen. Testaamista varten suunniteltiin ja toteutettiin käyttäjäkoe sovelluksen kohderyhmää edustavilla koekäyttäjillä. Saadut tulokset viittaavat siihen, että työssä esitetty Keskusteluavustin on toimiva ja hyödyllinen apuväline huonokuuloisille ja kuuroille. Puheentunnistustarkkuus erityisesti meluisissa olosuhteissa osoittautui ensisijaiseksi kehityskohteeksi apusovelluksen hyödyllisyyden lisäämiseksi. Puheentunnistuksen nopeus arvioitiin puolestaan jo riittävän nopeaksi, ylittäen selkeästi kirjoitustulkkien kirjoitusnopeuden

    Transfer Learning for Speech and Language Processing

    Full text link
    Transfer learning is a vital technique that generalizes models trained for one setting or task to other settings or tasks. For example in speech recognition, an acoustic model trained for one language can be used to recognize speech in another language, with little or no re-training data. Transfer learning is closely related to multi-task learning (cross-lingual vs. multilingual), and is traditionally studied in the name of `model adaptation'. Recent advance in deep learning shows that transfer learning becomes much easier and more effective with high-level abstract features learned by deep models, and the `transfer' can be conducted not only between data distributions and data types, but also between model structures (e.g., shallow nets and deep nets) or even model types (e.g., Bayesian models and neural models). This review paper summarizes some recent prominent research towards this direction, particularly for speech and language processing. We also report some results from our group and highlight the potential of this very interesting research field.Comment: 13 pages, APSIPA 201

    Preprocessing models for speech technologies : the impact of the normalizer and the grapheme-to-phoneme on hybrid systems

    Get PDF
    Um dos usos mais promissores e de crescimento mais rápido da tecnologia de linguagem natural corresponde às Tecnologias de Processamento da Fala. Esses sistemas usam tecnologia de reconhecimento automático de fala e conversão de texto em fala para fornecer uma interface de voz para aplicações de conversão. Com efeito, esta tecnologia está presente em diversas situações do nosso quotidiano, tais como assistentes virtuais em smartphones (como a SIRI ou Alexa), ou sistemas de interação por voz em automóveis. As tecnologias de fala evoluíram progressivamente até ao ponto em que os sistemas podem prestar pouca atenção à sua estrutura linguística. Com efeito, o Conhecimento Linguístico pode ser extremamente importante numa arquitetura de fala, particularmente numa fase de pré-processamento de dados: combinar conhecimento linguístico em modelo de tecnologia de fala permite produzir sistemas mais confiáveis e robustos. Neste sentido, o pré-processamento de dados é uma etapa fundamental na construção de um modelo de Inteligência Artificial (IA). Se os dados forem razoavelmente pré-processados, os resultados serão consistentes e de alta qualidade (García et al., 2016). Por exemplo, os sistemas mais modernos de reconhecimento de fala permitem modelizar entidades linguísticas em vários níveis, frases, palavras, fones e outras unidades, usando várias abordagens estatísticas (Jurafsky & Martin, 2022). Apesar de treinados sobre dados, estes sistemas são tão mais precisos quanto mais eficazes e eficientes a capturarem o conhecimento linguístico. Perante este cenário, este trabalho descreve os métodos de pré-processamento linguístico em sistemas híbridos (de inteligência artificial combinada com conhecimento linguístico) fornecidos por uma empresa internacional de Inteligência Artificial (IA), a Defined.ai. A start-up concentra-se em fornecer dados, modelos e ferramentas de alta qualidade para IA., a partir da sua plataforma de crowdsourcing Neevo. O utilizador da plataforma tem acesso a pequenas tarefas de anotação de dados, tais como: transcrição, gravação e anotação de áudios, validação de pronúncia, tradução de frases, classificação de sentimentos num texto, ou até extração de informação a partir de imagens e vídeos. Até ao momento, a empresa conta com mais de 500,000 utilizadores de 70 países e 50 línguas diferentes. Através duma recolha descentralizada dos dados, a Defined.ai responde à necessidade crescente de dados de treino que sejam justos, i.e., que não reflitam e/ou amplifiquem os padrões de discriminação vigentes na nossa sociedade (e.g., de género, raça, orientação sexual). Como resultado, a Defined.ai pode ser vista como uma comunidade de especialistas em IA, que produz sistemas justos, éticos e de futuro. Assim, o principal objetivo deste trabalho é aprimorar e avançar a qualidade dos modelos de pré-processamento, aplicando-lhes conhecimento linguístico. Assim, focamo-nos em dois modelos linguísticos introdutórios numa arquitetura de fala: Normalizador e Grafema-Fonema. Para abordar o assunto principal deste estudo, vamos delinear duas iniciativas realizadas em colaboração com a equipa de Machine learning da Defined.ai. O primeiro projeto centra-se na expansão e melhoria de um modelo Normalizador pt-PT. O segundo projeto abrange a criação de modelos Grafema-Fonema (do inglês Grapheme-to-phoneme, G2P) para duas línguas diferentes – Sueco e Russo. Os resultados mostram que ter uma abordagem baseada em regras para o Normalizador e G2P aumenta a sua precisão e desempenho, representado uma vantagem significativa na melhoria das ferramentas da Defined.ai e nas arquiteturas de fala. Além disso, com os resultados obtidos no primeiro projeto, melhoramos o normalizador na sua facilidade de uso, aumentando cada regra com o respetivo conhecimento linguístico. Desta forma, a nossa pesquisa demonstra o valor e a importância do conhecimento linguístico em modelos de pré-processamento. O primeiro projeto teve como objetivo fornecer cobertura para diversas regras linguísticas: Números Reais, Símbolos, Abreviaturas, Ordinais, Medidas, Moeda, Datas e Hora. A tarefa consistia em expandir as regras com suas respetivas expressões normalizadas a partir de regras a seguir que teriam uma leitura não marcada inequívoca própria. O objetivo principal é melhorar o normalizador tornando-o mais simples, consistente entre diferentes linguagens e de forma a cobrir entradas não ambíguas. Para preparar um modelo G2P para dois idiomas diferentes - Sueco e Russo - quatro tarefas foram realizadas: 1. Preparar uma análise linguística de cada língua, 2. Desenvolver um inventário fonético-fonológico inicial, 3. Mapear e converter automaticamente o léxico fonético para DC-Arpabet (o alfabeto fonético que a Defined.ai construiu), 4. Rever e corrigir o léxico fonético, e 4. Avaliar o modelo Grafema-Fonema. A revisão dos léxicos fonéticos foi realizada, em consulta com a nossa equipa da Defined.ai, por linguistas nativos que verificaram se os inventários fonéticos-fonológicos seriam adequados para transcrever. Segundo os resultados de cada modelo, nós avaliamos de acordo com 5 métricas padrão na literatura: Word Error Rate (WER), Precision, Recall, F1-score e Accuracy. Adaptamos a métrica WER para Word Error Rate over normalizable tokens (WERnorm) por forma a responder às necessidades dos nossos modelos. A métrica WER (ou taxa de erro por palavra) foi adaptada de forma a contabilizar tokens normalizáveis, em vez de todos os tokens. Deste modo, a avaliação do normalizador, avalia-se usando um conjunto de aproximadamente 1000 frases de referência, normalizadas manualmente e marcadas com a regra de normalização que deveria ser aplicada (por exemplo, números reais, símbolos, entre outros). De acordo com os resultados, na versão 2 do normalizador, obtivemos discrepâncias estatisticamente significativas entre as regras. A regra dos ordinais apresenta a maior percentagem (94%) e as abreviaturas (43%) o menor percentual. Concluímos também um aumento significativo no desempenho de algumas das regras. Por exemplo, as abreviaturas mostram um desempenho de 23 pontos percentuais (pp.) superior. Quando comparamos as duas versões, concluímos que a versão 2 do normalizador apresenta, em média, uma taxa de erro 4 pp. menor sobre os tokens normalizáveis em comparação com a versão 1. Assim, o uso da regra dos ordinais (94% F1-score) e da regra dos números reais (89% F1-score) é a maior fonte de melhoria no normalizador. Além disso, em relação à precisão, a versão 2 apresenta uma melhoria de, em média, 28 pp em relação à versão 1. No geral, os resultados revelam inequivocamente uma melhoria da performance do normalizador em todas as regras aplicadas. De acordo com os resultados do segundo projeto, o léxico fonético sueco alcançou um WER de 10%, enquanto o léxico fonético russo um WER ligeiramente inferior (11%). Os inventários fonético-fonológicos suecos apresentam uma precisão maior (97%) do que os inventários fonético-fonológicos russos (96%). No geral, o modelo sueco G2P apresenta um melhor desempenho (98%), embora a sua diferença ser menor quando comparado ao modelo russo (96%). Em conclusão, os resultados obtidos tiveram um impacto significativo na pipeline de fala da empresa e nas arquiteturas de fala escrita (15% é a arquitetura de fala). Além disso, a versão 2 do normalizador começou a ser usada noutros projetos do Defined.ai, principalmente em coleções de prompts de fala. Observamos que nossa expansão e melhoria na ferramenta abrangeu expressões que compõem uma proporção considerável de expressões normalizáveis, não limitando a utilidade da ferramenta, mas aumentando a diversidade que ela pode oferecer ao entregar prompts, por exemplo. Com base no trabalho desenvolvido, podemos observar que, ao ter uma abordagem baseada em regras para o Normalizador e o G2P, conseguimos aumentar a sua precisão e desempenho, representando não só uma vantagem significativa na melhoria das ferramentas da Defined.ai, como também nas arquiteturas de fala. Além disso, a nossa abordagem também foi aplicada a outras línguas obtendo resultados muito positivos e mostrando a importância da metodologia aplicada nesta tese. Desta forma, o nosso trabalho mostra a relevância e o valor acrescentado de aplicar conhecimento linguístico a modelos de pré-processamento.One of the most fast-growing and highly promising uses of natural language technology is in Speech Technologies. Such systems use automatic speech recognition (ASR) and text-to-speech (TTS) technology to provide a voice interface for conversational applications. Speech technologies have progressively evolved to the point where they pay little attention to their linguistic structure. Indeed, linguistic knowledge can be extremely important in a speech pipeline, particularly in the Data Preprocessing phase: combining linguistic knowledge in a speech technology model allows producing more reliable and robust systems. Given this background, this work describes the linguistic preprocessing methods in hybrid systems provided by an Artificial Intelligence (AI) international company, Defined.ai. The startup focuses on providing high-quality data, models, and AI tools. The main goal of this work is to enhance and advance the quality of preprocessing models by applying linguistic knowledge. Thus, we focus on two introductory linguistic models in a speech pipeline: Normalizer and Grapheme-to-Phoneme (G2P). To do so, two initiatives were conducted in collaboration with the Defined.ai Machine Learning team. The first project focuses on expanding and improving a pt-PT Normalizer model. The second project covers creating G2P models for two different languages – Swedish and Russian. Results show that having a rule-based approach to the Normalizer and G2P increases its accuracy and performance, representing a significant advantage in improving Defined.ai tools and speech pipelines. Also, with the results obtained on the first project, we improved the normalizer in ease of use by increasing each rule with linguistic knowledge. Accordingly, our research demonstrates the added value of linguistic knowledge in preprocessing models
    • …
    corecore