6,916 research outputs found

    Synapse: Synthetic Application Profiler and Emulator

    Full text link
    We introduce Synapse motivated by the needs to estimate and emulate workload execution characteristics on high-performance and distributed heterogeneous resources. Synapse has a platform independent application profiler, and the ability to emulate profiled workloads on a variety of heterogeneous resources. Synapse is used as a proxy application (or "representative application") for real workloads, with the added advantage that it can be tuned at arbitrary levels of granularity in ways that are simply not possible using real applications. Experiments show that automated profiling using Synapse represents application characteristics with high fidelity. Emulation using Synapse can reproduce the application behavior in the original runtime environment, as well as reproducing properties when used in a different run-time environments

    Massively parallel approximate Gaussian process regression

    Get PDF
    We explore how the big-three computing paradigms -- symmetric multi-processor (SMC), graphical processing units (GPUs), and cluster computing -- can together be brought to bare on large-data Gaussian processes (GP) regression problems via a careful implementation of a newly developed local approximation scheme. Our methodological contribution focuses primarily on GPU computation, as this requires the most care and also provides the largest performance boost. However, in our empirical work we study the relative merits of all three paradigms to determine how best to combine them. The paper concludes with two case studies. One is a real data fluid-dynamics computer experiment which benefits from the local nature of our approximation; the second is a synthetic data example designed to find the largest design for which (accurate) GP emulation can performed on a commensurate predictive set under an hour.Comment: 24 pages, 6 figures, 1 tabl
    • …
    corecore