50 research outputs found

    Towards harmonic extensions of pulsed melodic affective processing - further musical structures for increasing transparency in emotional computation

    Get PDF
    Pulsed Melodic Affective Processing (PMAP) is a method for the processing of artificial emotions in affective computing. PMAP is a data stream which can be listened to, as well as computed with. The affective state is represented by numbers which are analogues of musical features, rather than by a binary stream. Previous affective computation has been done with emotion category indices, or real numbers representing positivity of emotion, etc. PMAP data can be generated directly by sound and rhythms (e.g. heart rates or key-press speeds) and turned directly into into music with minimal transformation. This is because PMAP data is music and computations done with PMAP data are computations done with music. Why is this important? Because PMAP is constructed so that the emotion which its data represents at the computational level, will be similar to the emotion which a person "listening" to the PMAP melody hears. So PMAP can be used to calculate "feelings" and the result data will "sound like" the feelings calculated. Harmonic PMAP (PMAPh) is an extension of PMAP allowing harmonies to be used in calculations © 2014 Old City Publishing, Inc

    A Hybrid Computer Case Study for Unconventional Virtual Computing

    Get PDF
    Improvements in computer efficiency are not always due to increasing computation speed. The mouse and GUI approach to OS’s actually slowed down computation, but sped up computing. This paper highlights the concept of Unconventional Virtual Computation (UVC). With the increasing virtualization of computers, and the recognition that this year’s virtual computers are as fast as the hardware computers of 10 years ago, it becomes clear that we are only limited in our modes of computation by our imagination. A form of UVC is presented called Pulsed Melodic Affective Processing, which utilizes melodies to perform affective computations. PMAP makes computation more human-friendly by making it audible – a PMAP data stream sounds like the emotion it represents. A hybrid computation system is presented combining UVC PMAP with a Photonic Quantum Computer, in which the PMAP musico-logic circuit keeps the QC in a state of entanglement

    Pulsed Melodic Affective Processing: Musical structures for increasing transparency in emotional computation

    Get PDF
    Pulsed Melodic Affective Processing (PMAP) is a method for the processing of artificial emotions in affective computing. PMAP is a data stream designed to be listened to, as well as computed with. The affective state is represented by numbers that are analogues of musical features, rather than by a binary stream. Previous affective computation has been done with emotion category indices, or real numbers representing various emotional dimensions. PMAP data can be generated directly by sound (e.g. heart rates or key-press speeds) and turned directly into music with minimal transformation. This is because PMAP data is music and computations done with PMAP data are computations done with music. This is important because PMAP is constructed so that the emotion that its data represents at the computational level will be similar to the emotion that a person “listening” to the PMAP melody hears. Thus, PMAP can be used to calculate “feelings” and the result data will “sound like” the feelings calculated. PMAP can be compared to neural spike streams, but ones in which pulse heights and rates encode affective information. This paper illustrates PMAP in a range of simulations. In a multi-agent simulation, initial results support that an affective multi-robot security system could use PMAP to provide a basic control mechanism for “search-and-destroy”. Results of fitting a musical neural network with gradient descent to help solve a text emotional detection problem are also presented. The paper concludes by discussing how PMAP may be applicable in the stock markets, using a simplified order book simulation. © 2014, The Society for Modeling and Simulation International. All rights reserved

    Experiments in Sound and Music Quantum Computing

    Get PDF
    This chapter is an introduction to quantum computing in sound and music. This is done through a series of examples of research applying quantum computing and principles to musical systems. By this process, the key elements that differentiate quantum physical systems from classical physical systems will be introduced and what this implies for computation, sound, and music. This will also allow an explanation of the two main types of quantum computers being utilized inside and outside of academia

    ESCOM 2017 Proceedings

    Get PDF

    Safe and Sound: Proceedings of the 27th Annual International Conference on Auditory Display

    Get PDF
    Complete proceedings of the 27th International Conference on Auditory Display (ICAD2022), June 24-27. Online virtual conference

    SKR1BL

    Get PDF
    corecore