263 research outputs found

    Towards HSS as a virtualized service for 5G networks

    Get PDF
    © 2015 IFIP. Home Subscriber Server (HSS) is the main database of the current generation\u27s cellular communications systems. It contains subscriber-related information, such as the authentication information and the list of services to which each user is subscribed. The anticipated tremendous increase in the number of subscribers, services and devices (M2M) in 5G networks brings new challenges with regard to HSS provisioning. It calls for more scalability and elasticity regarding information storage, access and management. The current method for increasing the number of HSSs deployed is certainly not the most cost efficient solution. On the other hand, advanced virtualization techniques can aid in tackling the challenges while enabling a smooth migration to 5G. This paper proposes a new architecture for a scalable and elastic HSS using virtualization. The new architecture enables easy and rapid deployment of new HSS instances at a minimal cost, while increasing efficiency of the use of resources. The paper presents the architecture, demonstrates its use via a case scenario, describes the implemented proof of concept prototype and evaluates the performance results

    On the security of software-defined next-generation cellular networks

    Get PDF
    In the recent years, mobile cellular networks are ndergoing fundamental changes and many established concepts are being revisited. Future 5G network architectures will be designed to employ a wide range of new and emerging technologies such as Software Defined Networking (SDN) and Network Functions Virtualization (NFV). These create new virtual network elements each affecting the logic of the network management and operation, enabling the creation of new generation services with substantially higher data rates and lower delays. However, new security challenges and threats are also introduced. Current Long-Term Evolution (LTE) networks are not able to accommodate these new trends in a secure and reliable way. At the same time, novel 5G systems have proffered invaluable opportunities of developing novel solutions for attack prevention, management, and recovery. In this paper, first we discuss the main security threats and possible attack vectors in cellular networks. Second, driven by the emerging next-generation cellular networks, we discuss the architectural and functional requirements to enable appropriate levels of security

    A Virtual Network PaaS for 3GPP 4G and Beyond Core Network Services

    Full text link
    Cloud computing and Network Function Virtualization (NFV) are emerging as key technologies to overcome the challenges facing 4G and beyond mobile systems. Over the last few years, Platform-as-a-Service (PaaS) has gained momentum and has become more widely adopted throughout IT enterprises. It simplifies the applications provisioning and accelerates time-to-market while lowering costs. Telco can leverage the same model to provision the 4G and beyond core network services using NFV technology. However, many challenges have to be addressed, mainly due to the specificities of network services. This paper proposes an architecture for a Virtual Network Platform-as-a-Service (VNPaaS) to provision 3GPP 4G and beyond core network services in a distributed environment. As an illustrative use case, the proposed architecture is employed to provision the 3GPP Home Subscriber Server (HSS) as-a-Service (HSSaaS). The HSSaaS is built from Virtualized Network Functions (VNFs) resulting from a novel decomposition of HSS. A prototype is implemented and early measurements are made.Comment: 7 pages, 6 figures, 2 tables, 5th IEEE International Conference on Cloud Networking (IEEE CloudNet 2016

    Applicability of SDN and NFV techniques for a virtualization-based roaming solution

    Get PDF
    Part of a collection: Software-Defined Networking (SDN) and Network Function Virtualization (NFV) for a Hyperconnected World: Challenges, Applications, and Major Advancements.Network programming and virtualization are technological trends being incrementally introduced in operational networks. This creates an environment where new innovations can be incorporated, facilitating also the evolution of the way in which existing services are delivered. These changes, however, are not only motivated by technical reasons. External factors, such as regulation, can trigger the evolution of existing services. Roaming services are an example of this two-sided situation. From the technical perspective, roaming users typically experiment worst performance than local users on the same network, since their traffic is usually routed through the home network. Besides that, due to recent regulation changes introduced in Europe for roaming services, known as Roam Like at Home (RLAH), roaming is charged at domestic prices. Both aspects are severely challenging the current mode of operation of roaming services as delivered nowadays by mobile operators. This paper presents the design of a virtualized based roaming solution, including an experimental assessment, as well as an economic insight of the concept.This work has been supported by the European Community through the 5GEx project within the H2020 programme (Grant agreement no. 671636). Special thanks to the teams of Deutsche Telekom and BISDN involved in H2020 EU 5GEx project that were part of the design and execution of this use case

    OpenEPC Integration within 5GTN as an NFV proof of concept

    Get PDF
    Abstract. Gone are the days, when a hardware is changed on every malfunctioning and the whole operation either stays down or load on the replacing hardware becomes too much which ultimately compromises the QoS. The IT industry is mature enough to tackle problems regarding scalability, space utilization, energy consumption, cost, agility and low availability. The expected throughput and network latency with 5G in the cellular Telecommunication Networks seems to be unachievable with the existing architecture and resources. Network Function Virtualization promises to merge IT and Telecommunications in such an efficient way that the expected results could be achieved no longer but sooner. The thesis work examines the compatibility and flexibility of a 3GPP virtual core network in a virtualization platform. The testbed is established on an LTE (Long Term Evolution) based network being already deployed and OpenEPC is added as virtual core network on it. The integration of OpenEPC in 5GTN (5TH Generation Test Network) is discussed in details in the thesis which will give an account of the possibility of implementing such a simulated vEPC (Virtual Evolved Packet Core) in a real network platform. The deployed setup is tested to check its feasibility and flexibility for a platform which could be used for NFV deployment in future. The monitoring of OpenEPC’s individual components while utilizing the major resources within them, forms the primary performance test. The CPU Load and Memory Utilization is tested on different CPU stress levels having a constant data traffic from actual UEs. At the completion of the thesis work, a consensus is built up based on the test results that the test setup can hold number of subscribers to a certain amount without any performance degradation. Moreover, the virtual core network throughput and network latency is also compared to the commercial LTE networks and theoretical maximum values on similar resources to check performance consistency OpenEPC must offer

    Data-Driven resource orchestration in sliced 5G Networks

    Get PDF
    En los últimos años la quinta generación de comunicaciones móviles ha comenzado a desarrollarse. El 5G supone un gran cambio si se compara con las anteriores generaciones de comunicaciones móviles, puesto que no se centra meramente en aumentar el ancho de banda, reducir la latencia o mejorar la eficiencia espectral, sino en ofrecer un amplio rango de servicios y aplicaciones, con requisitos muy dispares entre sí, a una gran variedad de tipos de usuario. Estos objetivos pretenden ser alcanzados empleando nuevas tecnologías: Network Function Virtualization, Software Defined Networks, Network Slicing, Mobile Edge Computing, etc. El objetivo de este Trabajo de Fin de Máster es analizar el soporte actual de end-to-end Network Slicing en un entorno 5G Open Source y desarrollar una maqueta 5G con software que admita Network-slicing.In the past few years the fifth generation in mobile communications started to arise. 5G supposes a great change compared with the past mobile communication generations, it doesn’t aim merely at improving bandwidth, reducing delay or upgrading spectral efficiency but at offering a wide range of services and applications, with huge differentrequirements, to a vast variety of users. These objectives are to be accomplished using new technologies such as: Network Function Virtualization, Software Defined Networks, Network Slicing, Mobile Edge Computing, etc. The objective of this Master Thesisis to analyze the current support for end-to-end Network Slicing in a 5G Open Source environment and to developan open source5GTestbedwith recent Software contributions in Network Slicing.Máster Universitario en Ingeniería de Telecomunicación (M125

    Will SDN be part of 5G?

    Get PDF
    For many, this is no longer a valid question and the case is considered settled with SDN/NFV (Software Defined Networking/Network Function Virtualization) providing the inevitable innovation enablers solving many outstanding management issues regarding 5G. However, given the monumental task of softwarization of radio access network (RAN) while 5G is just around the corner and some companies have started unveiling their 5G equipment already, the concern is very realistic that we may only see some point solutions involving SDN technology instead of a fully SDN-enabled RAN. This survey paper identifies all important obstacles in the way and looks at the state of the art of the relevant solutions. This survey is different from the previous surveys on SDN-based RAN as it focuses on the salient problems and discusses solutions proposed within and outside SDN literature. Our main focus is on fronthaul, backward compatibility, supposedly disruptive nature of SDN deployment, business cases and monetization of SDN related upgrades, latency of general purpose processors (GPP), and additional security vulnerabilities, softwarization brings along to the RAN. We have also provided a summary of the architectural developments in SDN-based RAN landscape as not all work can be covered under the focused issues. This paper provides a comprehensive survey on the state of the art of SDN-based RAN and clearly points out the gaps in the technology.Comment: 33 pages, 10 figure
    • …
    corecore