560 research outputs found

    XTSC-Bench: Quantitative Benchmarking for Explainers on Time Series Classification

    Full text link
    Despite the growing body of work on explainable machine learning in time series classification (TSC), it remains unclear how to evaluate different explainability methods. Resorting to qualitative assessment and user studies to evaluate explainers for TSC is difficult since humans have difficulties understanding the underlying information contained in time series data. Therefore, a systematic review and quantitative comparison of explanation methods to confirm their correctness becomes crucial. While steps to standardized evaluations were taken for tabular, image, and textual data, benchmarking explainability methods on time series is challenging due to a) traditional metrics not being directly applicable, b) implementation and adaption of traditional metrics for time series in the literature vary, and c) varying baseline implementations. This paper proposes XTSC-Bench, a benchmarking tool providing standardized datasets, models, and metrics for evaluating explanation methods on TSC. We analyze 3 perturbation-, 6 gradient- and 2 example-based explanation methods to TSC showing that improvements in the explainers' robustness and reliability are necessary, especially for multivariate data.Comment: Accepted at ICMLA 202

    It is not "accuracy vs. explainability" -- we need both for trustworthy AI systems

    Full text link
    We are witnessing the emergence of an AI economy and society where AI technologies are increasingly impacting health care, business, transportation and many aspects of everyday life. Many successes have been reported where AI systems even surpassed the accuracy of human experts. However, AI systems may produce errors, can exhibit bias, may be sensitive to noise in the data, and often lack technical and judicial transparency resulting in reduction in trust and challenges in their adoption. These recent shortcomings and concerns have been documented in scientific but also in general press such as accidents with self driving cars, biases in healthcare, hiring and face recognition systems for people of color, seemingly correct medical decisions later found to be made due to wrong reasons etc. This resulted in emergence of many government and regulatory initiatives requiring trustworthy and ethical AI to provide accuracy and robustness, some form of explainability, human control and oversight, elimination of bias, judicial transparency and safety. The challenges in delivery of trustworthy AI systems motivated intense research on explainable AI systems (XAI). Aim of XAI is to provide human understandable information of how AI systems make their decisions. In this paper we first briefly summarize current XAI work and then challenge the recent arguments of accuracy vs. explainability for being mutually exclusive and being focused only on deep learning. We then present our recommendations for the use of XAI in full lifecycle of high stakes trustworthy AI systems delivery, e.g. development, validation and certification, and trustworthy production and maintenance

    Explaining black boxes with a SMILE: Statistical Model-agnostic Interpretability with Local Explanations

    Get PDF
    Machine learning is currently undergoing an explosion in capability, popularity, and sophistication. However, one of the major barriers to widespread acceptance of machine learning (ML) is trustworthiness: most ML models operate as black boxes, their inner workings opaque and mysterious, and it can be difficult to trust their conclusions without understanding how those conclusions are reached. Explainability is therefore a key aspect of improving trustworthiness: the ability to better understand, interpret, and anticipate the behaviour of ML models. To this end, we propose SMILE, a new method that builds on previous approaches by making use of statistical distance measures to improve explainability while remaining applicable to a wide range of input data domains

    Explaining black boxes with a SMILE: Statistical Model-agnostic Interpretability with Local Explanations

    Full text link
    Machine learning is currently undergoing an explosion in capability, popularity, and sophistication. However, one of the major barriers to widespread acceptance of machine learning (ML) is trustworthiness: most ML models operate as black boxes, their inner workings opaque and mysterious, and it can be difficult to trust their conclusions without understanding how those conclusions are reached. Explainability is therefore a key aspect of improving trustworthiness: the ability to better understand, interpret, and anticipate the behaviour of ML models. To this end, we propose SMILE, a new method that builds on previous approaches by making use of statistical distance measures to improve explainability while remaining applicable to a wide range of input data domains

    OpenXAI: Towards a Transparent Evaluation of Model Explanations

    Full text link
    While several types of post hoc explanation methods (e.g., feature attribution methods) have been proposed in recent literature, there is little to no work on systematically benchmarking these methods in an efficient and transparent manner. Here, we introduce OpenXAI, a comprehensive and extensible open source framework for evaluating and benchmarking post hoc explanation methods. OpenXAI comprises of the following key components: (i) a flexible synthetic data generator and a collection of diverse real-world datasets, pre-trained models, and state-of-the-art feature attribution methods, (ii) open-source implementations of twenty-two quantitative metrics for evaluating faithfulness, stability (robustness), and fairness of explanation methods, and (iii) the first ever public XAI leaderboards to benchmark explanations. OpenXAI is easily extensible, as users can readily evaluate custom explanation methods and incorporate them into our leaderboards. Overall, OpenXAI provides an automated end-to-end pipeline that not only simplifies and standardizes the evaluation of post hoc explanation methods, but also promotes transparency and reproducibility in benchmarking these methods. OpenXAI datasets and data loaders, implementations of state-of-the-art explanation methods and evaluation metrics, as well as leaderboards are publicly available at https://open-xai.github.io/.Comment: 36th Conference on Neural Information Processing Systems (NeurIPS 2022) Track on Datasets and Benchmark

    CLEAR: Generative Counterfactual Explanations on Graphs

    Full text link
    Counterfactual explanations promote explainability in machine learning models by answering the question "how should an input instance be perturbed to obtain a desired predicted label?". The comparison of this instance before and after perturbation can enhance human interpretation. Most existing studies on counterfactual explanations are limited in tabular data or image data. In this work, we study the problem of counterfactual explanation generation on graphs. A few studies have explored counterfactual explanations on graphs, but many challenges of this problem are still not well-addressed: 1) optimizing in the discrete and disorganized space of graphs; 2) generalizing on unseen graphs; and 3) maintaining the causality in the generated counterfactuals without prior knowledge of the causal model. To tackle these challenges, we propose a novel framework CLEAR which aims to generate counterfactual explanations on graphs for graph-level prediction models. Specifically, CLEAR leverages a graph variational autoencoder based mechanism to facilitate its optimization and generalization, and promotes causality by leveraging an auxiliary variable to better identify the underlying causal model. Extensive experiments on both synthetic and real-world graphs validate the superiority of CLEAR over the state-of-the-art methods in different aspects.Comment: 18 pages, 9 figure

    bLIMEy:Surrogate Prediction Explanations Beyond LIME

    Get PDF
    Surrogate explainers of black-box machine learning predictions are of paramount importance in the field of eXplainable Artificial Intelligence since they can be applied to any type of data (images, text and tabular), are model-agnostic and are post-hoc (i.e., can be retrofitted). The Local Interpretable Model-agnostic Explanations (LIME) algorithm is often mistakenly unified with a more general framework of surrogate explainers, which may lead to a belief that it is the solution to surrogate explainability. In this paper we empower the community to "build LIME yourself" (bLIMEy) by proposing a principled algorithmic framework for building custom local surrogate explainers of black-box model predictions, including LIME itself. To this end, we demonstrate how to decompose the surrogate explainers family into algorithmically independent and interoperable modules and discuss the influence of these component choices on the functional capabilities of the resulting explainer, using the example of LIME.Comment: 2019 Workshop on Human-Centric Machine Learning (HCML 2019); 33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canad
    • …
    corecore