10,281 research outputs found

    A Theme-Rewriting Approach for Generating Algebra Word Problems

    Full text link
    Texts present coherent stories that have a particular theme or overall setting, for example science fiction or western. In this paper, we present a text generation method called {\it rewriting} that edits existing human-authored narratives to change their theme without changing the underlying story. We apply the approach to math word problems, where it might help students stay more engaged by quickly transforming all of their homework assignments to the theme of their favorite movie without changing the math concepts that are being taught. Our rewriting method uses a two-stage decoding process, which proposes new words from the target theme and scores the resulting stories according to a number of factors defining aspects of syntactic, semantic, and thematic coherence. Experiments demonstrate that the final stories typically represent the new theme well while still testing the original math concepts, outperforming a number of baselines. We also release a new dataset of human-authored rewrites of math word problems in several themes.Comment: To appear EMNLP 201

    Donaldson-Thomas invariants, torus knots, and lattice paths

    Get PDF
    In this paper we find and explore the correspondence between quivers, torus knots, and combinatorics of counting paths. Our first result pertains to quiver representation theory -- we find explicit formulae for classical generating functions and Donaldson-Thomas invariants of an arbitrary symmetric quiver. We then focus on quivers corresponding to (r,s)(r,s) torus knots and show that their classical generating functions, in the extremal limit and framing rsrs, are generating functions of lattice paths under the line of the slope r/sr/s. Generating functions of such paths satisfy extremal A-polynomial equations, which immediately follows after representing them in terms of the Duchon grammar. Moreover, these extremal A-polynomial equations encode Donaldson-Thomas invariants, which provides an interesting example of algebraicity of generating functions of these invariants. We also find a quantum generalization of these statements, i.e. a relation between motivic quiver generating functions, quantum extremal knot invariants, and qq-weighted path counting. Finally, in the case of the unknot, we generalize this correspondence to the full HOMFLY-PT invariants and counting of Schr\"oder paths.Comment: 45 pages. Corrected typos in new versio

    On the finite presentation of subdirect products and the nature of residually free groups

    Full text link
    We establish {\em{virtual surjection to pairs}} (VSP) as a general criterion for the finite presentability of subdirect products of groups: if Γ1,...,Γn\Gamma_1,...,\Gamma_n are finitely presented and S<Γ1×...×ΓnS<\Gamma_1\times...\times\Gamma_n projects to a subgroup of finite index in each Γi×Γj\Gamma_i\times\Gamma_j, then SS is finitely presentable, indeed there is an algorithm that will construct a finite presentation for SS. We use the VSP criterion to characterise the finitely presented residually free groups. We prove that the class of such groups is recursively enumerable. We describe an algorithm that, given a finite presentation of a residually free group, constructs a canonical embedding into a direct product of finitely many limit groups. We solve the (multiple) conjugacy problem and membership problem for finitely presentable subgroups of residually free groups. We also prove that there is an algorithm that, given a finite generating set for such a subgroup, will construct a finite presentation. New families of subdirect products of free groups are constructed, including the first examples of finitely presented subgroups that are neither FP∞{\rm{FP}}_\infty nor of Stallings-Bieri typeComment: 44 pages. To appear in American Journal of Mathematics. This is a substantial rewrite of our previous Arxiv article 0809.3704, taking into account subsequent developments, advice of colleagues and referee's comment
    • …
    corecore