8,803 research outputs found

    Fully Observable Non-deterministic Planning as Assumption-Based Reactive Synthesis

    Get PDF
    We contribute to recent efforts in relating two approaches to automatic synthesis, namely, automated planning and discrete reactive synthesis. First, we develop a declarative characterization of the standard “fairness” assumption on environments in non-deterministic planning, and show that strong-cyclic plans are correct solution concepts for fair environments. This complements, and arguably completes, the existing foundational work on non-deterministic planning, which focuses on characterizing (and computing) plans enjoying special “structural” properties, namely loopy but closed policy structures. Second, we provide an encoding suitable for reactive synthesis that avoids the naive exponential state space blowup. To do so, special care has to be taken to specify the fairness assumption on the environment in a succinct manner.Fil: D'ippolito, Nicolás Roque. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; ArgentinaFil: Rodriguez, Natalia. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; ArgentinaFil: Sardina, Sebastian. RMIT University; Australi

    LTL Control in Uncertain Environments with Probabilistic Satisfaction Guarantees

    Full text link
    We present a method to generate a robot control strategy that maximizes the probability to accomplish a task. The task is given as a Linear Temporal Logic (LTL) formula over a set of properties that can be satisfied at the regions of a partitioned environment. We assume that the probabilities with which the properties are satisfied at the regions are known, and the robot can determine the truth value of a proposition only at the current region. Motivated by several results on partitioned-based abstractions, we assume that the motion is performed on a graph. To account for noisy sensors and actuators, we assume that a control action enables several transitions with known probabilities. We show that this problem can be reduced to the problem of generating a control policy for a Markov Decision Process (MDP) such that the probability of satisfying an LTL formula over its states is maximized. We provide a complete solution for the latter problem that builds on existing results from probabilistic model checking. We include an illustrative case study.Comment: Technical Report accompanying IFAC 201

    Certified Reinforcement Learning with Logic Guidance

    Full text link
    This paper proposes the first model-free Reinforcement Learning (RL) framework to synthesise policies for unknown, and continuous-state Markov Decision Processes (MDPs), such that a given linear temporal property is satisfied. We convert the given property into a Limit Deterministic Buchi Automaton (LDBA), namely a finite-state machine expressing the property. Exploiting the structure of the LDBA, we shape a synchronous reward function on-the-fly, so that an RL algorithm can synthesise a policy resulting in traces that probabilistically satisfy the linear temporal property. This probability (certificate) is also calculated in parallel with policy learning when the state space of the MDP is finite: as such, the RL algorithm produces a policy that is certified with respect to the property. Under the assumption of finite state space, theoretical guarantees are provided on the convergence of the RL algorithm to an optimal policy, maximising the above probability. We also show that our method produces ''best available'' control policies when the logical property cannot be satisfied. In the general case of a continuous state space, we propose a neural network architecture for RL and we empirically show that the algorithm finds satisfying policies, if there exist such policies. The performance of the proposed framework is evaluated via a set of numerical examples and benchmarks, where we observe an improvement of one order of magnitude in the number of iterations required for the policy synthesis, compared to existing approaches whenever available.Comment: This article draws from arXiv:1801.08099, arXiv:1809.0782

    Control with Probabilistic Signal Temporal Logic

    Full text link
    Autonomous agents often operate in uncertain environments where their decisions are made based on beliefs over states of targets. We are interested in controller synthesis for complex tasks defined over belief spaces. Designing such controllers is challenging due to computational complexity and the lack of expressivity of existing specification languages. In this paper, we propose a probabilistic extension to signal temporal logic (STL) that expresses tasks over continuous belief spaces. We present an efficient synthesis algorithm to find a control input that maximises the probability of satisfying a given task. We validate our algorithm through simulations of an unmanned aerial vehicle deployed for surveillance and search missions.Comment: 7 pages, submitted to the 2016 American Control Conference (ACC 2016) on September, 30, 2015 (under review

    Control with probabilistic signal temporal logic

    Full text link
    Autonomous agents often operate in uncertain environments where their decisions are made based on beliefs over states of targets. We are interested in controller synthesis for complex tasks defined over belief spaces. Designing such controllers is challenging due to computational complexity and the lack of expressivity of existing specification languages. In this paper, we propose a probabilistic extension to signal temporal logic (STL) that expresses tasks over continuous belief spaces. We present an efficient synthesis algorithm to find a control input that maximises the probability of satisfying a given task. We validate our algorithm through simulations of an unmanned aerial vehicle deployed for surveillance and search missions

    High-level Programming via Generalized Planning and LTL Synthesis

    Get PDF
    We look at program synthesis where the aim is to automatically synthesize a controller that operates on data structures and from which a concrete program can be easily derived. We do not aim at a fully-automatic process or tool that produces a program meeting a given specification of the program’s behaviour. Rather, we aim at the design of a clear and well- founded approach for supporting programmers at the design and implementation phases. Concretely, we first show that a program synthesis task can be modeled as a generalized planning problem. This is done at an abstraction level where the involved data structures are seen as black-boxes that can be interfaced with actions and observations, the first corresponding to the operations and the second to the queries provided by the data structure. The abstraction level is high enough to capture intuitive and common assumptions as well as general and simple strategies used by programmers, and yet it contains sufficient structure to support the automated generation of concrete solutions (in the form of controllers). From such controllers and the use of standard data structures, an actual program in a general language like C++ or Python can be easily obtained. Then, we discuss how the resulting generalized planning problem can be reduced to an LTL synthesis problem, thus making available any LTL synthesis engine for obtaining the controllers. We illustrate the effectiveness of the approach on a series of examples
    corecore