1,139 research outputs found

    Towards Universality in Automatic Freeway Incident Detection: A Calibration-Free Algorithm

    Get PDF
    Freeway automatic incident detection (AID) algorithms have been extensively investigated over the last forty years. A myriad of algorithms, covering a broad range of types in terms of complexity, data requirements, and efficiency have been published in the literature. However, a 2007 nationwide survey concluded that the implementation of AID algorithms in traffic management centers is still very limited. There are a few reasons for this discrepancy between the state-of-the-art and the state-of the-practice. First, current AID algorithms yield unacceptably high rates of false alarm when implemented in real-world. Second, the complexities involved in algorithm calibration require levels of efforts and diligence that may overburden Traffic Management Center (TMC) personnel. The main objective of this research was to develop a self-learning, transferable algorithm that requires no calibration. The dynamic thresholds of the proposed algorithm are based on historical data of traffic, thus accounting for variations of traffic throughout the day. Therefore, the novel approach is able to recognize recurrent congestion, thus greatly reducing the incidence of false alarms. In addition, the proposed method requires no human-intervention, which certainly encourages its implementation. The presented model was evaluated in a newly developed incident database, which contained forty incidents. The model performed better than the California, Minnesota, and Standard Normal Deviation algorithms

    A Link-based Mixed Integer LP Approach for Adaptive Traffic Signal Control

    Full text link
    This paper is concerned with adaptive signal control problems on a road network, using a link-based kinematic wave model (Han et al., 2012). Such a model employs the Lighthill-Whitham-Richards model with a triangular fundamental diagram. A variational type argument (Lax, 1957; Newell, 1993) is applied so that the system dynamics can be determined without knowledge of the traffic state in the interior of each link. A Riemann problem for the signalized junction is explicitly solved; and an optimization problem is formulated in continuous-time with the aid of binary variables. A time-discretization turns the optimization problem into a mixed integer linear program (MILP). Unlike the cell-based approaches (Daganzo, 1995; Lin and Wang, 2004; Lo, 1999b), the proposed framework does not require modeling or computation within a link, thus reducing the number of (binary) variables and computational effort. The proposed model is free of vehicle-holding problems, and captures important features of signalized networks such as physical queue, spill back, vehicle turning, time-varying flow patterns and dynamic signal timing plans. The MILP can be efficiently solved with standard optimization software.Comment: 15 pages, 7 figures, current version is accepted for presentation at the 92nd Annual Meeting of Transportation Research Boar

    A Rule Based Control Algorithm for on-Ramp Merge With Connected and Automated Vehicles

    Get PDF
    One of the designs for future highways with the flow of Connected Automated Vehicles (CAVs) cars will be a dedicated lane for the CAVs to form platoons and travel with higher speeds and lower headways. The connectivity will enable the formation of platoons of CAVs traveling beside non-platoon lanes. The advent of connectivity between vehicles and the infrastructure will enable advanced control strategies ̶ improving the performance of the traffic ̶ to be incorporated in the traffic system. The merge area in a multilane highway with CAVs is one of the sections which can be enhanced by the operation of a control system. In this research, a model is developed for investigating the effects of a Rule Based control strategy yielding a more efficient and systematic method for the vehicles joining the highway mainlines comprised of platoon and non-platoon lanes. The actions tested for assisting the merge process included deceleration in the mainlines and lane change to join a platoon in the platoon lane. The model directs every CAV entering a multi-lane highway from an on-ramp, to the rightmost lane of the highway based on the appropriate action which is selected according to the traffic demand conditions and location of the on-ramp vehicle. To account for car following behavior, the vehicles in the platoon lanes are assumed to have a simplified CACC (cooperative adaptive cruise control) and those in the non-platoon lanes the IDM+ car-following model. The IDM+ car following model is modified with additional controls to incorporate the current technologies of Advanced Driver Assistant Systems (ADAS). The results of this study showed that the proposed car following model can increase the throughput of the non-platoon lane from approximately 2000 vehicle per hour (vph) to 3400 vph while the platoon lanes each had an average throughput of 3500 vph. The merge model enabled higher merging throughput for the merge area compared to current day conditions and displayed the potential for improved traffic performance in a connected environment comprised of platoon and non-platoon lanes. The results of this research will help in the design and development of advanced systems for controlling on-ramp merge sections in the future with CAVs
    • …
    corecore