578 research outputs found

    Remote Airport Traffic Control Center (2008 - 2012) Final Presentation and Workshop - Extended Abstracts

    Get PDF
    The present report contains the extended and revised version of the abstracts collection of the presentations given at the final international workshop of the DLR-project RAiCe (Remote Airport traffic Control Center, 2008 - 2012), held on November 30 2012 in Braunschweig. The RaiCe presentations are complemented by two external contributions,from the Swedish ANSP LFV and company Frequentis, representing the industrial perspective on Remote Tower research and development. The RaiCe workshop was a satellite event of the Second SESAR Innovation Days (SID 2012, Nov. 27-29) which was held in Braunschweig, following the first one in Toulouse 2011. One of the RaiCe validation results papers was presented at SID2012 and is also included in the present report for com-pleteness, besides inclusion in the SID2012 proceedings. In addition to the collection of extended abstracts and an introduction, besides some general refer-ences a list of the publications of the DLR Remote Tower Group (time frame 2002 – 2012) is provid-ed. A list of the workshop participants is added as part of the Appendix

    Video Understanding for Complex Activity Recognition

    Get PDF
    International audienceThis paper presents a real-time video understanding system which automatically recognises activities occuring in environments observed through video surveillance cameras. Our approach consists in three main stages : Scene Tracking, Coherence Maintenance, and Scene Understanding. The main challenges are to provide a robust tracking process to be able to recognise events in outdoor and in real applications conditions, to allow the monitoring of a large scene through a camera network, and to automatically recognise complex events involving several actors interacting with each others. This approach has been validated for Airport Activity Monitoring in the framework of the European project AVITRACK

    Study for the Implementation of Remote Control Towers in European Airports

    Get PDF
    Remote provision of air traffic control services at airports has been developed as a more cost-effective alternative to the construction and operation of conventional control towers. Based on digital camera and data processing systems, remote towers provide a perfect replica of the airfield environment which enables provision of air traffic control from any location. In this study thesis, a preliminary feasibility analysis of the remote tower solution is presented from a general perspective to a more specific analysis for different types of airports, as well as proposing some guidelines for the implementation of remote towers at large scale in Europe focusing on a specific case study for Spain. Implementation of remote towers has been found a great alternative for small and medium-size regional airports for which, by means of centralised remote tower centers from which several airports are controlled, greater flexibility and operational cost reduction can be achieved by sharing human resources

    Design and Development of a Research Framework for Prototyping Control Tower Augmented Reality Tools

    Get PDF
    The purpose of the air traffic management system is to ensure the safe and efficient flow of air traffic. Therefore, while augmenting efficiency, throughput and capacity in airport operations, attention has rightly been placed on doing it in a safe manner. In the control tower, many advances in operational safety have come in the form of visualization tools for tower controllers. However, there is a paradox in developing such systems to increase controllers' situational awareness: by creating additional computer displays, the controller's vision is pulled away from the outside view and the time spent looking down at the monitors is increased. This reduces their situational awareness by forcing them to mentally and physically switch between the head-down equipment and the outside view. This research is based on the idea that augmented reality may be able to address this issue. The augmented reality concept has become increasingly popular over the past decade and is being proficiently used in many fields, such as entertainment, cultural heritage, aviation, military & defense. This know-how could be transferred to air traffic control with a relatively low effort and substantial benefits for controllers’ situation awareness. Research on this topic is consistent with SESAR objectives of increasing air traffic controllers’ situation awareness and enable up to 10 % of additional flights at congested airports while still increasing safety and efficiency. During the Ph.D., a research framework for prototyping augmented reality tools was set up. This framework consists of methodological tools for designing the augmented reality overlays, as well as of hardware and software equipment to test them. Several overlays have been designed and implemented in a simulated tower environment, which is a virtual reconstruction of Bologna airport control tower. The positive impact of such tools was preliminary assessed by means of the proposed methodology

    Trajectory-Based Takeoff Time Predictions Applied to Tactical Departure Scheduling: Concept Description, System Design, and Initial Observations

    Get PDF
    Current aircraft departure release times are based on manual estimates of aircraft takeoff times. Uncertainty in takeoff time estimates may result in missed opportunities to merge into constrained en route streams and lead to lost throughput. However, technology exists to improve takeoff time estimates by using the aircraft surface trajectory predictions that enable air traffic control tower (ATCT) decision support tools. NASA s Precision Departure Release Capability (PDRC) is designed to use automated surface trajectory-based takeoff time estimates to improve en route tactical departure scheduling. This is accomplished by integrating an ATCT decision support tool with an en route tactical departure scheduling decision support tool. The PDRC concept and prototype software have been developed, and an initial test was completed at air traffic control facilities in Dallas/Fort Worth. This paper describes the PDRC operational concept, system design, and initial observations

    Videopanorama Frame Rate Requirements Derived from Visual Discrimination of Deceleration During Simulated Aircraft Landing

    Get PDF
    In order to determine the required visual frame rate (FR) for minimizing prediction errors with out-the-window video displays at remote/virtual airport towers, thirteen active air traffic controllers viewed high dynamic fidelity simulations of landing aircraft and decided whether aircraft would stop as if to be able to make a turnoff or whether a runway excursion would be expected. The viewing conditions and simulation dynamics replicated visual rates and environments of transport aircraft landing at small commercial airports. The required frame rate was estimated using Bayes inference on prediction errors by linear FRextrapolation of event probabilities conditional on predictions (stop, no-stop). Furthermore estimates were obtained from exponential model fits to the parametric and non-parametric perceptual discriminabilities d' and A (average area under ROC-curves) as dependent on FR. Decision errors are biased towards preference of overshoot and appear due to illusionary increase in speed at low frames rates. Both Bayes and A - extrapolations yield a framerate requirement of 35 40 Hz for minimizing decision errors. Definitive recommendations require further experiments with FR > 30 Hz

    Safety‐oriented discrete event model for airport A‐SMGCS reliability assessment

    Get PDF
    A detailed analysis of State of the Art Technologies and Procedures into Airport Advanced-Surface Movement Guidance and Control Systems has been provided in this thesis, together with the review ofStatistical Monte Carlo Analysis, Reliability Assessment and Petri Nets theories. This practical and theoretical background has lead the author to the conclusion that there is a lack of linkage in between these fields. At the same of time the rapid increasing of Air Traffic all over the world, has brought in evidence the urgent need of practical instruments able to identify and quantify the risks connected with Aircraft operations on the ground, since the Airport has shown to be the actual ‘bottle neck’ of the entire Air Transport System. Therefore, the only winning approach to such a critical matter has to be multi-disciplinary, sewing together apparently different subjects, coming from the most disparate areas of interest and trying to fulfil the gap. The result of this thesis work has come to a start towards the end, when a Timed Coloured Petri Net (TCPN) model of a ‘sample’ Airport A-SMGCS has been developed, that is capable of taking into account different orders of questions arisen during these recent years and tries to give them some good answers. The A-SMGCS Airport model is, in the end, a parametric tool relying on Discrete Event System theory, able to perform a Reliability Analysis of the system itself, that: ‱ uses a Monte Carlo Analysis applied to a Timed Coloured Petri Net, whose purpose is to evaluate the Safety Level of Surface Movements along an Airport ‱ lets the user to analyse the impact of Procedures and Reliability Indexes of Systems such as Surface Movement Radars, Automatic Dependent Surveillance-Broadcast, Airport Lighting Systems, Microwave Sensors, and so on
 onto the Safety Level of Airport Aircraft Transport System ‱ not only is a valid instrument in the Design Phase, but it is useful also into the Certifying Activities an in monitoring the Safety Level of the above mentioned System with respect to changes to Technologies and different Procedures.This TCPN model has been verified against qualitative engineering expectations by using simulation experiments and occupancy time schedules generated a priori. Simulation times are good, and since the model has been written into Simulink/Stateflow programming language, it can be compiled to run real-time in C language (Real-time workshop and Stateflow Coder), thus relying on portable code, able to run virtually on any platform, giving even better performances in terms of execution time. One of the most interesting applications of this work is the estimate, for an Airport, of the kind of A-SMGCS level of implementation needed (Technical/Economical convenience evaluation). As a matter of fact, starting from the Traffic Volume and choosing the kind of Ground Equipment to be installed, one can make predictions about the Safety Level of the System: if the value is compliant with the TLS required by ICAO, the A-SMGCS level of Implementation is sufficiently adequate. Nevertheless, even if the Level of Safety has been satisfied, some delays due to reduced or simplified performances (even if Safety is compliant) of some of the equipment (e.g. with reference to False Alarm Rates) can lead to previously unexpected economical consequences, thus requiring more accurate systems to be installed, in order to meet also Airport economical constraints. Work in progress includes the analysis of the effect of weather conditions and re-sequencing of a given schedule. The effect of re-sequencing a given schedule is not yet enough realistic since the model does not apply inter arrival and departure separations. However, the model might show some effect on different sequences based on runway occupancy times. A further developed model containing wake turbulence separation conditions would be more sensitive for this case. Hence, further work will be directed towards: ‱ The development of On-Line Re-Scheduling based on the available actual runway/taxiway configuration and weather conditions. ‱ The Engineering Safety Assessment of some small Italian Airport A-SMGCSs (Model validation with real data). ‱ The application of Stochastic Differential Equations systems in order to evaluate the collision risk on the ground inside the Place alone on the Petri Net, in the event of a Short Term Conflict Alert (STCA), by adopting Reich Collision Risk Model. ‱ Optimal Air Traffic Control Algorithms Synthesis (Adaptive look-ahead Optimization), by Dynamically Timed Coloured Petri Nets, together with the implementation of Error-Recovery Strategies and Diagnosis Functions

    Flight Delay Prediction Using a Hybrid Deep Learning Method

    Get PDF
    The operational effectiveness of airports and airlines greatly relies on punctuality. Many conventional machine learning and deep learning algorithms are applied in the analysis of air traffic data. However, the hybrid deep learning (HDL) model demonstrates great success with superior results in many complex problems, e.g. image classification and behaviour detection based on video data. Interestingly, no previous attempts have been made to apply the concept of HDL in analysing structured air traffic data before. Hence, this research investigates the effectiveness of the HDL in the departure delays severity prediction (i.e. on-time, delay and extremely delay) for 10 major airports in the U.S. that experience high ground and air congestion. The proposed HDL model is a combination of a feed-forward artificial neural network model with three hidden layers and a conventional gradient boosted tree model (XGBoost). Utilising the passenger flight on-time performance data from the U.S. Department of Transportation, the proposed HDL model achieves a sharp rise of 22.95% in accuracy when compared to a pure neural network model. However, with current data used in this research, a pure machine learning model achieves the best prediction accuracy

    3D-in-2D Displays for ATC.

    Get PDF
    This paper reports on the efforts and accomplishments of the 3D-in-2D Displays for ATC project at the end of Year 1. We describe the invention of 10 novel 3D/2D visualisations that were mostly implemented in the Augmented Reality ARToolkit. These prototype implementations of visualisation and interaction elements can be viewed on the accompanying video. We have identified six candidate design concepts which we will further research and develop. These designs correspond with the early feasibility studies stage of maturity as defined by the NASA Technology Readiness Level framework. We developed the Combination Display Framework from a review of the literature, and used it for analysing display designs in terms of display technique used and how they are combined. The insights we gained from this framework then guided our inventions and the human-centered innovation process we use to iteratively invent. Our designs are based on an understanding of user work practices. We also developed a simple ATC simulator that we used for rapid experimentation and evaluation of design ideas. We expect that if this project continues, the effort in Year 2 and 3 will be focus on maturing the concepts and employment in a operational laboratory settings

    Existing and Required Modeling Capabilities for Evaluating ATM Systems and Concepts

    Get PDF
    ATM systems throughout the world are entering a period of major transition and change. The combination of important technological developments and of the globalization of the air transportation industry has necessitated a reexamination of some of the fundamental premises of existing Air Traffic Management (ATM) concepts. New ATM concepts have to be examined, concepts that may place more emphasis on: strategic traffic management; planning and control; partial decentralization of decision-making; and added reliance on the aircraft to carry out strategic ATM plans, with ground controllers confined primarily to a monitoring and supervisory role. 'Free Flight' is a case in point. In order to study, evaluate and validate such new concepts, the ATM community will have to rely heavily on models and computer-based tools/utilities, covering a wide range of issues and metrics related to safety, capacity and efficiency. The state of the art in such modeling support is adequate in some respects, but clearly deficient in others. It is the objective of this study to assist in: (1) assessing the strengths and weaknesses of existing fast-time models and tools for the study of ATM systems and concepts and (2) identifying and prioritizing the requirements for the development of additional modeling capabilities in the near future. A three-stage process has been followed to this purpose: 1. Through the analysis of two case studies involving future ATM system scenarios, as well as through expert assessment, modeling capabilities and supporting tools needed for testing and validating future ATM systems and concepts were identified and described. 2. Existing fast-time ATM models and support tools were reviewed and assessed with regard to the degree to which they offer the capabilities identified under Step 1. 3 . The findings of 1 and 2 were combined to draw conclusions about (1) the best capabilities currently existing, (2) the types of concept testing and validation that can be carried out reliably with such existing capabilities and (3) the currently unavailable modeling capabilities that should receive high priority for near-term research and development. It should be emphasized that the study is concerned only with the class of 'fast time' analytical and simulation models. 'Real time' models, that typically involve humans-in-the-loop, comprise another extensive class which is not addressed in this report. However, the relationship between some of the fast-time models reviewed and a few well-known real-time models is identified in several parts of this report and the potential benefits from the combined use of these two classes of models-a very important subject-are discussed in chapters 4 and 7
    • 

    corecore