22,598 research outputs found

    Towards fast algorithms for the preference consistency problem based on hierarchical models

    Get PDF
    In this paper, we construct and compare algorithmic approaches to solve the Preference Consistency Problem for preference statements based on hierarchical models. Instances of this problem contain a set of preference statements that are direct comparisons (strict and non-strict) between some alternatives, and a set of evaluation functions by which all alternatives can be rated. An instance is consistent based on hierarchical preference models, if there exists an hierarchical model on the evaluation functions that induces an order relation on the alternatives by which all relations given by the preference statements are satisfied. Deciding if an instance is consistent is known to be NP-complete for hierarchical models. We develop three approaches to solve this decision problem. The first involves a Mixed Integer Linear Programming (MILP) formulation, the other two are recursive algorithms that are based on properties of the problem by which the search space can be pruned. Our experiments on synthetic data show that the recursive algorithms are faster than solving the MILP formulation and that the ratio between the running times increases extremely quickly

    Momentum Control with Hierarchical Inverse Dynamics on a Torque-Controlled Humanoid

    Full text link
    Hierarchical inverse dynamics based on cascades of quadratic programs have been proposed for the control of legged robots. They have important benefits but to the best of our knowledge have never been implemented on a torque controlled humanoid where model inaccuracies, sensor noise and real-time computation requirements can be problematic. Using a reformulation of existing algorithms, we propose a simplification of the problem that allows to achieve real-time control. Momentum-based control is integrated in the task hierarchy and a LQR design approach is used to compute the desired associated closed-loop behavior and improve performance. Extensive experiments on various balancing and tracking tasks show very robust performance in the face of unknown disturbances, even when the humanoid is standing on one foot. Our results demonstrate that hierarchical inverse dynamics together with momentum control can be efficiently used for feedback control under real robot conditions.Comment: 21 pages, 11 figures, 4 tables in Autonomous Robots (2015

    Connected component identification and cluster update on GPU

    Full text link
    Cluster identification tasks occur in a multitude of contexts in physics and engineering such as, for instance, cluster algorithms for simulating spin models, percolation simulations, segmentation problems in image processing, or network analysis. While it has been shown that graphics processing units (GPUs) can result in speedups of two to three orders of magnitude as compared to serial codes on CPUs for the case of local and thus naturally parallelized problems such as single-spin flip update simulations of spin models, the situation is considerably more complicated for the non-local problem of cluster or connected component identification. I discuss the suitability of different approaches of parallelization of cluster labeling and cluster update algorithms for calculations on GPU and compare to the performance of serial implementations.Comment: 15 pages, 14 figures, one table, submitted to PR

    Construction of a Pragmatic Base Line for Journal Classifications and Maps Based on Aggregated Journal-Journal Citation Relations

    Full text link
    A number of journal classification systems have been developed in bibliometrics since the launch of the Citation Indices by the Institute of Scientific Information (ISI) in the 1960s. These systems are used to normalize citation counts with respect to field-specific citation patterns. The best known system is the so-called "Web-of-Science Subject Categories" (WCs). In other systems papers are classified by algorithmic solutions. Using the Journal Citation Reports 2014 of the Science Citation Index and the Social Science Citation Index (n of journals = 11,149), we examine options for developing a new system based on journal classifications into subject categories using aggregated journal-journal citation data. Combining routines in VOSviewer and Pajek, a tree-like classification is developed. At each level one can generate a map of science for all the journals subsumed under a category. Nine major fields are distinguished at the top level. Further decomposition of the social sciences is pursued for the sake of example with a focus on journals in information science (LIS) and science studies (STS). The new classification system improves on alternative options by avoiding the problem of randomness in each run that has made algorithmic solutions hitherto irreproducible. Limitations of the new system are discussed (e.g. the classification of multi-disciplinary journals). The system's usefulness for field-normalization in bibliometrics should be explored in future studies.Comment: accepted for publication in the Journal of Informetrics, 20 July 201
    • …
    corecore