429 research outputs found

    Revisiting the Internet of Things: New Trends, Opportunities and Grand Challenges

    Full text link
    The Internet of Things (IoT) has brought the dream of ubiquitous data access from physical environments into reality. IoT embeds sensors and actuators in physical objects so that they can communicate and exchange data between themselves to improve efficiency along with enabling real-time intelligent services and offering better quality of life to people. The number of deployed IoT devices has rapidly grown in the past five years in a way that makes IoT the most disruptive technology in recent history. In this paper, we reevaluate the position of IoT in our life and provide deep insights on its enabling technologies, applications, rising trends and grand challenges. The paper also highlights the role of artificial intelligence to make IoT the top transformative technology that has been ever developed in human history

    Developing a distributed electronic health-record store for India

    Get PDF
    The DIGHT project is addressing the problem of building a scalable and highly available information store for the Electronic Health Records (EHRs) of the over one billion citizens of India

    Open Platforms for Connected Vehicles

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Building the Hyperconnected Society- Internet of Things Research and Innovation Value Chains, Ecosystems and Markets

    Get PDF
    This book aims to provide a broad overview of various topics of Internet of Things (IoT), ranging from research, innovation and development priorities to enabling technologies, nanoelectronics, cyber-physical systems, architecture, interoperability and industrial applications. All this is happening in a global context, building towards intelligent, interconnected decision making as an essential driver for new growth and co-competition across a wider set of markets. It is intended to be a standalone book in a series that covers the Internet of Things activities of the IERC – Internet of Things European Research Cluster from research to technological innovation, validation and deployment.The book builds on the ideas put forward by the European Research Cluster on the Internet of Things Strategic Research and Innovation Agenda, and presents global views and state of the art results on the challenges facing the research, innovation, development and deployment of IoT in future years. The concept of IoT could disrupt consumer and industrial product markets generating new revenues and serving as a growth driver for semiconductor, networking equipment, and service provider end-markets globally. This will create new application and product end-markets, change the value chain of companies that creates the IoT technology and deploy it in various end sectors, while impacting the business models of semiconductor, software, device, communication and service provider stakeholders. The proliferation of intelligent devices at the edge of the network with the introduction of embedded software and app-driven hardware into manufactured devices, and the ability, through embedded software/hardware developments, to monetize those device functions and features by offering novel solutions, could generate completely new types of revenue streams. Intelligent and IoT devices leverage software, software licensing, entitlement management, and Internet connectivity in ways that address many of the societal challenges that we will face in the next decade

    Autonomous Vehicles an overview on system, cyber security, risks, issues, and a way forward

    Full text link
    This chapter explores the complex realm of autonomous cars, analyzing their fundamental components and operational characteristics. The initial phase of the discussion is elucidating the internal mechanics of these automobiles, encompassing the crucial involvement of sensors, artificial intelligence (AI) identification systems, control mechanisms, and their integration with cloud-based servers within the framework of the Internet of Things (IoT). It delves into practical implementations of autonomous cars, emphasizing their utilization in forecasting traffic patterns and transforming the dynamics of transportation. The text also explores the topic of Robotic Process Automation (RPA), illustrating the impact of autonomous cars on different businesses through the automation of tasks. The primary focus of this investigation lies in the realm of cybersecurity, specifically in the context of autonomous vehicles. A comprehensive analysis will be conducted to explore various risk management solutions aimed at protecting these vehicles from potential threats including ethical, environmental, legal, professional, and social dimensions, offering a comprehensive perspective on their societal implications. A strategic plan for addressing the challenges and proposing strategies for effectively traversing the complex terrain of autonomous car systems, cybersecurity, hazards, and other concerns are some resources for acquiring an understanding of the intricate realm of autonomous cars and their ramifications in contemporary society, supported by a comprehensive compilation of resources for additional investigation. Keywords: RPA, Cyber Security, AV, Risk, Smart Car

    Towards the Internet of Smart Trains: A Review on Industrial IoT-Connected Railways

    Get PDF
    [Abstract] Nowadays, the railway industry is in a position where it is able to exploit the opportunities created by the IIoT (Industrial Internet of Things) and enabling communication technologies under the paradigm of Internet of Trains. This review details the evolution of communication technologies since the deployment of GSM-R, describing the main alternatives and how railway requirements, specifications and recommendations have evolved over time. The advantages of the latest generation of broadband communication systems (e.g., LTE, 5G, IEEE 802.11ad) and the emergence of Wireless Sensor Networks (WSNs) for the railway environment are also explained together with the strategic roadmap to ensure a smooth migration from GSM-R. Furthermore, this survey focuses on providing a holistic approach, identifying scenarios and architectures where railways could leverage better commercial IIoT capabilities. After reviewing the main industrial developments, short and medium-term IIoT-enabled services for smart railways are evaluated. Then, it is analyzed the latest research on predictive maintenance, smart infrastructure, advanced monitoring of assets, video surveillance systems, railway operations, Passenger and Freight Information Systems (PIS/FIS), train control systems, safety assurance, signaling systems, cyber security and energy efficiency. Overall, it can be stated that the aim of this article is to provide a detailed examination of the state-of-the-art of different technologies and services that will revolutionize the railway industry and will allow for confronting today challenges.Galicia. Consellería de Cultura, Educación e Ordenación Universitaria; ED431C 2016-045Galicia. Consellería de Cultura, Educación e Ordenación Universitaria; ED341D R2016/012Galicia. Consellería de Cultura, Educación e Ordenación Universitaria; ED431G/01Agencia Estatal de Investigación (España); TEC2013-47141-C4-1-RAgencia Estatal de Investigación (España); TEC2015-69648-REDCAgencia Estatal de Investigación (España); TEC2016-75067-C4-1-

    Building the Hyperconnected Society- Internet of Things Research and Innovation Value Chains, Ecosystems and Markets

    Get PDF
    This book aims to provide a broad overview of various topics of Internet of Things (IoT), ranging from research, innovation and development priorities to enabling technologies, nanoelectronics, cyber-physical systems, architecture, interoperability and industrial applications. All this is happening in a global context, building towards intelligent, interconnected decision making as an essential driver for new growth and co-competition across a wider set of markets. It is intended to be a standalone book in a series that covers the Internet of Things activities of the IERC – Internet of Things European Research Cluster from research to technological innovation, validation and deployment.The book builds on the ideas put forward by the European Research Cluster on the Internet of Things Strategic Research and Innovation Agenda, and presents global views and state of the art results on the challenges facing the research, innovation, development and deployment of IoT in future years. The concept of IoT could disrupt consumer and industrial product markets generating new revenues and serving as a growth driver for semiconductor, networking equipment, and service provider end-markets globally. This will create new application and product end-markets, change the value chain of companies that creates the IoT technology and deploy it in various end sectors, while impacting the business models of semiconductor, software, device, communication and service provider stakeholders. The proliferation of intelligent devices at the edge of the network with the introduction of embedded software and app-driven hardware into manufactured devices, and the ability, through embedded software/hardware developments, to monetize those device functions and features by offering novel solutions, could generate completely new types of revenue streams. Intelligent and IoT devices leverage software, software licensing, entitlement management, and Internet connectivity in ways that address many of the societal challenges that we will face in the next decade

    GAN-CAN: A Novel Attack to Behavior-Based Driver Authentication Systems

    Get PDF
    openFor many years, car keys have been the sole mean of authentication in vehicles. Whether the access control process is physical or wireless, entrusting the ownership of a vehicle to a single token is prone to stealing attempts. Modern vehicles equipped with the Controller Area Network (CAN) bus technology collects a wealth of sensor data in real-time, covering aspects such as the vehicle, environment, and driver. This data can be processed and analyzed to gain valuable insights and solutions for human behavior analysis. For this reason, many researchers started developing behavior-based authentication systems. Many Machine Learning (ML) and Deep Learning models (DL) have been explored for behavior-based driver authentication, but the emphasis on security has not been a primary focus in the design of these systems. By collecting data in a moving vehicle, DL models can recognize patterns in the data and identify drivers based on their driving behavior. This can be used as an anti-theft system, as a thief would exhibit a different driving style compared to the vehicle owner. However, the assumption that an attacker cannot replicate the legitimate driver behavior falls under certain conditions. In this thesis, we propose GAN-CAN, the first attack capable of fooling state-of-the-art behavior-based driver authentication systems in a vehicle. Based on the adversary's knowledge, we propose different GAN-CAN implementations. Our attack leverages the lack of security in the CAN bus to inject suitably designed time-series data to mimic the legitimate driver. Our malicious time series data is generated through the integration of a modified reinforcement learning technique with Generative Adversarial Networks (GANs) with adapted training process. Furthermore we conduct a thorough investigation into the safety implications of the injected values throughout the attack. This meticulous study is conducted to guarantee that the introduced values do not in any way undermine the safety of the vehicle and the individuals inside it. Also, we formalize a real-world implementation of a driver authentication system considering possible vulnerabilities and exploits. We tested GAN-CAN in an improved version of the most efficient driver behavior-based authentication model in the literature. We prove that our attack can fool it with an attack success rate of up to 99%. We show how an attacker, without prior knowledge of the authentication system, can steal a car by deploying GAN-CAN in an off-the-shelf system in under 22 minutes. Moreover, by considering the safety importance of the injected values, we demonstrate that GAN-CAN can successfully deceive the authentication system without compromising the overall safety of the vehicle. This highlights the urgent need to address the security vulnerabilities present in behavior-based driver authentication systems. In the end, we suggest some possible countermeasures to the GAN-CAN attack.For many years, car keys have been the sole mean of authentication in vehicles. Whether the access control process is physical or wireless, entrusting the ownership of a vehicle to a single token is prone to stealing attempts. Modern vehicles equipped with the Controller Area Network (CAN) bus technology collects a wealth of sensor data in real-time, covering aspects such as the vehicle, environment, and driver. This data can be processed and analyzed to gain valuable insights and solutions for human behavior analysis. For this reason, many researchers started developing behavior-based authentication systems. Many Machine Learning (ML) and Deep Learning models (DL) have been explored for behavior-based driver authentication, but the emphasis on security has not been a primary focus in the design of these systems. By collecting data in a moving vehicle, DL models can recognize patterns in the data and identify drivers based on their driving behavior. This can be used as an anti-theft system, as a thief would exhibit a different driving style compared to the vehicle owner. However, the assumption that an attacker cannot replicate the legitimate driver behavior falls under certain conditions. In this thesis, we propose GAN-CAN, the first attack capable of fooling state-of-the-art behavior-based driver authentication systems in a vehicle. Based on the adversary's knowledge, we propose different GAN-CAN implementations. Our attack leverages the lack of security in the CAN bus to inject suitably designed time-series data to mimic the legitimate driver. Our malicious time series data is generated through the integration of a modified reinforcement learning technique with Generative Adversarial Networks (GANs) with adapted training process. Furthermore we conduct a thorough investigation into the safety implications of the injected values throughout the attack. This meticulous study is conducted to guarantee that the introduced values do not in any way undermine the safety of the vehicle and the individuals inside it. Also, we formalize a real-world implementation of a driver authentication system considering possible vulnerabilities and exploits. We tested GAN-CAN in an improved version of the most efficient driver behavior-based authentication model in the literature. We prove that our attack can fool it with an attack success rate of up to 99%. We show how an attacker, without prior knowledge of the authentication system, can steal a car by deploying GAN-CAN in an off-the-shelf system in under 22 minutes. Moreover, by considering the safety importance of the injected values, we demonstrate that GAN-CAN can successfully deceive the authentication system without compromising the overall safety of the vehicle. This highlights the urgent need to address the security vulnerabilities present in behavior-based driver authentication systems. In the end, we suggest some possible countermeasures to the GAN-CAN attack

    Special Topics in Information Technology

    Get PDF
    This open access book presents thirteen outstanding doctoral dissertations in Information Technology from the Department of Electronics, Information and Bioengineering, Politecnico di Milano, Italy. Information Technology has always been highly interdisciplinary, as many aspects have to be considered in IT systems. The doctoral studies program in IT at Politecnico di Milano emphasizes this interdisciplinary nature, which is becoming more and more important in recent technological advances, in collaborative projects, and in the education of young researchers. Accordingly, the focus of advanced research is on pursuing a rigorous approach to specific research topics starting from a broad background in various areas of Information Technology, especially Computer Science and Engineering, Electronics, Systems and Control, and Telecommunications. Each year, more than 50 PhDs graduate from the program. This book gathers the outcomes of the thirteen best theses defended in 2020-21 and selected for the IT PhD Award. Each of the authors provides a chapter summarizing his/her findings, including an introduction, description of methods, main achievements and future work on the topic. Hence, the book provides a cutting-edge overview of the latest research trends in Information Technology at Politecnico di Milano, presented in an easy-to-read format that will also appeal to non-specialists
    • …
    corecore