5,433 research outputs found

    Secure data sharing and processing in heterogeneous clouds

    Get PDF
    The extensive cloud adoption among the European Public Sector Players empowered them to own and operate a range of cloud infrastructures. These deployments vary both in the size and capabilities, as well as in the range of employed technologies and processes. The public sector, however, lacks the necessary technology to enable effective, interoperable and secure integration of a multitude of its computing clouds and services. In this work we focus on the federation of private clouds and the approaches that enable secure data sharing and processing among the collaborating infrastructures and services of public entities. We investigate the aspects of access control, data and security policy languages, as well as cryptographic approaches that enable fine-grained security and data processing in semi-trusted environments. We identify the main challenges and frame the future work that serve as an enabler of interoperability among heterogeneous infrastructures and services. Our goal is to enable both security and legal conformance as well as to facilitate transparency, privacy and effectivity of private cloud federations for the public sector needs. © 2015 The Authors

    Semantic-based policy engineering for autonomic systems

    No full text
    This paper presents some important directions in the use of ontology-based semantics in achieving the vision of Autonomic Communications. We examine the requirements of Autonomic Communication with a focus on the demanding needs of ubiquitous computing environments, with an emphasis on the requirements shared with Autonomic Computing. We observe that ontologies provide a strong mechanism for addressing the heterogeneity in user task requirements, managed resources, services and context. We then present two complimentary approaches that exploit ontology-based knowledge in support of autonomic communications: service-oriented models for policy engineering and dynamic semantic queries using content-based networks. The paper concludes with a discussion of the major research challenges such approaches raise

    On a Formal and User-friendly Linguistic Approach to Access Control of Electronic Health Data

    Get PDF
    The importance of the exchange of Electronic Health Records (EHRs) between hospitals has been recognized by governments and institutions. Due to the sensitivity of data exchanged, only mature standards and implementations can be chosen to operate. This exchange process is of course under the control of the patient, who decides who has the rights to access her personal healthcare data and who has not, by giving her personal privacy consent. Patients’ privacy consent is regulated by local legislations, which can vary frequently from region to region. The technology implementing such privacy aspects must be highly adaptable, often resulting in complex security scenarios that cannot be easily managed by patients and software designers. To overcome such security problems, we advocate the use of a linguistic approach that relies on languages for expressing policies with solid mathematical foundations. Our approach bases on FACPL, a policy language we have intentionally designed by taking inspiration from OASIS XACML, the de-facto standard used in all projects covering secure EHRs transmission protected by patients’ privacy consent. FACPL can express policies similar to those expressible by XACML but, differently from XACML, it has an intuitive syntax, a formal semantics and easy to use software tools supporting policy development and enforcement. In this paper, we present the potentialities of our approach and outline ongoing work

    Design and evaluation of dynamic policy-based flow redirection for multihomed mobile netwotks

    Get PDF
    This paper presents the design, implementation and evaluation of a solution for dynamic redirection of traffic flows for multihomed mobile networks. The solution was developed for a mobile user that disposes of a Personal Area Network (PAN) with a Personal Mobile Router (PMR), in order to achieve Always Best Connected(ABC) service by distributing flows belonging to different applications among the most appropriate access networks. Designed in a modular way for a NEMO based mobility and multihoming support, the proposed flow redirection solution can be easily coupled with and controlled by dynamic traffic policies that come from advanced network intelligence, according to the currently available network resources and user and application requirements. A prototype implementation was validated and assessed on a testbed as proof-of-concept

    Formalisation and Implementation of the XACML Access Control Mechanism

    Get PDF
    We propose a formal account of XACML, an OASIS standard adhering to the Policy Based Access Control model for the specifica- tion and enforcement of access control policies. To clarify all ambiguous and intricate aspects of XACML, we provide it with a more manageable alternative syntax and with a solid semantic ground. This lays the basis for developing tools and methodologies which allow software engineers to easily and precisely regulate access to resources using policies. To demonstrate feasibility and effectiveness of our approach, we provide a software tool, supporting the specification and evaluation of policies and access requests, whose implementation fully relies on our formal development

    Growing the use of Virtual Worlds in education : an OpenSim perspective

    Get PDF
    The growth in the range of disciplines that Virtual Worlds support for educational purposes is evidenced by recent applications in the fields of cultural heritage, humanitarian aid, space exploration, virtual laboratories in the physical sciences, archaeology, computer science and coastal geography. This growth is due in part to the flexibility of OpenSim, the open source virtual world platform which by adopting Second Life protocols and norms has created a de facto standard for open virtual worlds that is supported by a growing number of third party open source viewers. Yet while this diversity of use-cases is impressive and Virtual Worlds for open learning are highly popular with lecturers and learners alike immersive education remains an essentially niche activity. This paper identifies functional challenges in terms of Management, Network Infrastructure, the Immersive 3D Web and Programmability that must be addressed to enable the wider adoption of Open Virtual Worlds as a routine learning technology platform. We refer to specific use-cases based on OpenSim and abstract generic requirements which should be met to enable the growth in use of Open Virtual Worlds as a mainstream educational facility. A case study of a deployment to support a formal education curriculum and associated informal learning is used to illustrate key points.Postprin
    • 

    corecore