124,090 research outputs found

    Towards Effective and Efficient Data Management in Embedded Systems and Internet of Things

    Get PDF
    The majority of today low-end and low-cost embedded devices work in dynamic environments under several constraints such as low power, reduced memory, limited processing and communication, etc. Therefore, their data management is critical. We introduce here a general method for data representation, storage, and transmission in embedded systems based on a compact representation scheme and some heuristics. This method has been implemented, tested, and evaluated within a vehicle tracking system that uses an in-house very low cost microcontroller-based telemetry device, which provides for near-real-time remote vehicle monitoring, energy consumption, ubiquitous health, etc. However, our method is general and can be used for any type of low-cost and resource-constrained embedded device, where data communication from the device to the Internet (or cloud) is involved. Its efficiency and effectiveness are proven by significant reductions of mobile data transmitted, as our case study shows. Further benefits are reducing power consumption and transmission costs

    Big Data and the Internet of Things

    Full text link
    Advances in sensing and computing capabilities are making it possible to embed increasing computing power in small devices. This has enabled the sensing devices not just to passively capture data at very high resolution but also to take sophisticated actions in response. Combined with advances in communication, this is resulting in an ecosystem of highly interconnected devices referred to as the Internet of Things - IoT. In conjunction, the advances in machine learning have allowed building models on this ever increasing amounts of data. Consequently, devices all the way from heavy assets such as aircraft engines to wearables such as health monitors can all now not only generate massive amounts of data but can draw back on aggregate analytics to "improve" their performance over time. Big data analytics has been identified as a key enabler for the IoT. In this chapter, we discuss various avenues of the IoT where big data analytics either is already making a significant impact or is on the cusp of doing so. We also discuss social implications and areas of concern.Comment: 33 pages. draft of upcoming book chapter in Japkowicz and Stefanowski (eds.) Big Data Analysis: New algorithms for a new society, Springer Series on Studies in Big Data, to appea

    When Things Matter: A Data-Centric View of the Internet of Things

    Full text link
    With the recent advances in radio-frequency identification (RFID), low-cost wireless sensor devices, and Web technologies, the Internet of Things (IoT) approach has gained momentum in connecting everyday objects to the Internet and facilitating machine-to-human and machine-to-machine communication with the physical world. While IoT offers the capability to connect and integrate both digital and physical entities, enabling a whole new class of applications and services, several significant challenges need to be addressed before these applications and services can be fully realized. A fundamental challenge centers around managing IoT data, typically produced in dynamic and volatile environments, which is not only extremely large in scale and volume, but also noisy, and continuous. This article surveys the main techniques and state-of-the-art research efforts in IoT from data-centric perspectives, including data stream processing, data storage models, complex event processing, and searching in IoT. Open research issues for IoT data management are also discussed

    Sensing as a Service Model for Smart Cities Supported by Internet of Things

    Full text link
    The world population is growing at a rapid pace. Towns and cities are accommodating half of the world's population thereby creating tremendous pressure on every aspect of urban living. Cities are known to have large concentration of resources and facilities. Such environments attract people from rural areas. However, unprecedented attraction has now become an overwhelming issue for city governance and politics. The enormous pressure towards efficient city management has triggered various Smart City initiatives by both government and private sector businesses to invest in ICT to find sustainable solutions to the growing issues. The Internet of Things (IoT) has also gained significant attention over the past decade. IoT envisions to connect billions of sensors to the Internet and expects to use them for efficient and effective resource management in Smart Cities. Today infrastructure, platforms, and software applications are offered as services using cloud technologies. In this paper, we explore the concept of sensing as a service and how it fits with the Internet of Things. Our objective is to investigate the concept of sensing as a service model in technological, economical, and social perspectives and identify the major open challenges and issues.Comment: Transactions on Emerging Telecommunications Technologies 2014 (Accepted for Publication

    Management and Service-aware Networking Architectures (MANA) for Future Internet Position Paper: System Functions, Capabilities and Requirements

    Get PDF
    Future Internet (FI) research and development threads have recently been gaining momentum all over the world and as such the international race to create a new generation Internet is in full swing: GENI, Asia Future Internet, Future Internet Forum Korea, European Union Future Internet Assembly (FIA). This is a position paper identifying the research orientation with a time horizon of 10 years, together with the key challenges for the capabilities in the Management and Service-aware Networking Architectures (MANA) part of the Future Internet (FI) allowing for parallel and federated Internet(s)

    Active learning based laboratory towards engineering education 4.0

    Get PDF
    Universities have a relevant and essential key role to ensure knowledge and development of competencies in the current fourth industrial revolution called Industry 4.0. The Industry 4.0 promotes a set of digital technologies to allow the convergence between the information technology and the operation technology towards smarter factories. Under such new framework, multiple initiatives are being carried out worldwide as response of such evolution, particularly, from the engineering education point of view. In this regard, this paper introduces the initiative that is being carried out at the Technical University of Catalonia, Spain, called Industry 4.0 Technologies Laboratory, I4Tech Lab. The I4Tech laboratory represents a technological environment for the academic, research and industrial promotion of related technologies. First, in this work, some of the main aspects considered in the definition of the so called engineering education 4.0 are discussed. Next, the proposed laboratory architecture, objectives as well as considered technologies are explained. Finally, the basis of the proposed academic method supported by an active learning approach is presented.Postprint (published version
    corecore