9,334 research outputs found

    Context-aware adaptation in DySCAS

    Get PDF
    DySCAS is a dynamically self-configuring middleware for automotive control systems. The addition of autonomic, context-aware dynamic configuration to automotive control systems brings a potential for a wide range of benefits in terms of robustness, flexibility, upgrading etc. However, the automotive systems represent a particularly challenging domain for the deployment of autonomics concepts, having a combination of real-time performance constraints, severe resource limitations, safety-critical aspects and cost pressures. For these reasons current systems are statically configured. This paper describes the dynamic run-time configuration aspects of DySCAS and focuses on the extent to which context-aware adaptation has been achieved in DySCAS, and the ways in which the various design and implementation challenges are met

    Load Balancing towards ECU Integration

    Get PDF
    There has been an exponential increase in the number of electronic components embedded in vehicles. Development processes, techniques and tools have changed to accommodate that evaluation. A wide range of electronic functions such as navigation, adaptive control, infotainment, traffic information, safety system etc are implemented in today’s vehicles. Many of the new functions are not stand alone and hence they need to exchange information, sometimes with stringent time constraints for time critical functions such as engine management, collision warning systems etc. The complexity of the embedded architecture in a vehicle is continually increasing. Today up to 2500 signals are exchanged through up to 70 Electronic Control Units (ECUs) using 5 different buses. This paper introduces the load balancing approach across ECUs supplied by various Tier1 suppliers

    Load balancing issues in automotives

    Get PDF
    Electronic Control Units (ECUs) are widely used to improve the comfort and reliability of vehicles. It has become the fundamental building block of any automotive subsystem and is interfaced with electro mechanics counterpart. To meet the system wide requirements, these ECUs are interconnected using the communication infrastructure. Although the communication infrastructure in terms of, predominantly, the CAN based vehicle network took its birth to enable ECUs to work in a coordinated manner in order to support system wide requirements, during the past decade, this infrastructure was also viewed as a potential means to incorporate extensibility in terms of addition of newer ECUs which are built for implementing additional requirements. With this paradigm, the number of ECUs started growing in a steep manner, uncontrolled and as a result, today, it is not hard to see a high segment automotive housing ECUs as large as 75–80. Hence, load balancing mechanisms are needed to ease ECU integration and for efficient utilization of CPU power in ECUs. In this paper, we explain the concept of load balancing on the basis of CPU utilization across ECUs

    Load Balancing in Multi ECU Configuration

    Get PDF
    Electronic Control Units (ECUs) are widely used to improve the comfort and reliability of vehicles. It has become the fundamental building block of any automotive subsystem and is interfaced with electro mechanics counterpart. To meet the system wide requirements, these ECUs are interconnected using the communication infrastructure. Although the communication infrastructure in terms of, predominantly, the CAN based vehicle network took its birth to enable ECUs to work in a coordinated manner in order to support system wide requirements, during the past decade, this infrastructure was also viewed as a potential means to incorporate extensibility in terms of addition of newer ECUs which are built for implementing additional requirements. With this paradigm, the number of ECUs started growing in a steep manner, uncontrolled and as a result, today, it is not hard to see a high segment automotive housing ECUs as large as 75-80. Hence, load balancing mechanisms are needed to ease ECU integration and for efficient utilization of CPU power in ECUs. In this paper, we explain the mathematical approach for load balancing across ECUs on the basis of CPU utilization

    Multiagent Systems in Automotive Applications

    Get PDF
    The multiagent systems have proved to be a useful tool in the design of solutions to problems of distributed nature. In a distributed system, it is possible that the data, the control actions or even both, be distributed. The concept of agent is a suitable notion for capturing situations where the global knowledge about the status of a system is complex or even impossible to acquire in a single entity. In automotive applications, there exist a great number of scenarios of distributed nature, such as the traffic coordination, routes load balancing problems, traffic negotiation among the infrastructure and cars, to mention a few. Even more, the autonomous driving features of the new generation of cars will require the new methods of car to car communication, car to infrastructure negotiation, and even infrastructure to infrastructure communication. This chapter proposes the application of multiagent system techniques to some problems in the automotive field

    Federated Robust Embedded Systems: Concepts and Challenges

    Get PDF
    The development within the area of embedded systems (ESs) is moving rapidly, not least due to falling costs of computation and communication equipment. It is believed that increased communication opportunities will lead to the future ESs no longer being parts of isolated products, but rather parts of larger communities or federations of ESs, within which information is exchanged for the benefit of all participants. This vision is asserted by a number of interrelated research topics, such as the internet of things, cyber-physical systems, systems of systems, and multi-agent systems. In this work, the focus is primarily on ESs, with their specific real-time and safety requirements. While the vision of interconnected ESs is quite promising, it also brings great challenges to the development of future systems in an efficient, safe, and reliable way. In this work, a pre-study has been carried out in order to gain a better understanding about common concepts and challenges that naturally arise in federations of ESs. The work was organized around a series of workshops, with contributions from both academic participants and industrial partners with a strong experience in ES development. During the workshops, a portfolio of possible ES federation scenarios was collected, and a number of application examples were discussed more thoroughly on different abstraction levels, starting from screening the nature of interactions on the federation level and proceeding down to the implementation details within each ES. These discussions led to a better understanding of what can be expected in the future federated ESs. In this report, the discussed applications are summarized, together with their characteristics, challenges, and necessary solution elements, providing a ground for the future research within the area of communicating ESs

    Ethernet - a survey on its fields of application

    Get PDF
    During the last decades, Ethernet progressively became the most widely used local area networking (LAN) technology. Apart from LAN installations, Ethernet became also attractive for many other fields of application, ranging from industry to avionics, telecommunication, and multimedia. The expanded application of this technology is mainly due to its significant assets like reduced cost, backward-compatibility, flexibility, and expandability. However, this new trend raises some problems concerning the services of the protocol and the requirements for each application. Therefore, specific adaptations prove essential to integrate this communication technology in each field of application. Our primary objective is to show how Ethernet has been enhanced to comply with the specific requirements of several application fields, particularly in transport, embedded and multimedia contexts. The paper first describes the common Ethernet LAN technology and highlights its main features. It reviews the most important specific Ethernet versions with respect to each application field’s requirements. Finally, we compare these different fields of application and we particularly focus on the fundamental concepts and the quality of service capabilities of each proposal
    • …
    corecore