191,432 research outputs found

    Dwarna : a blockchain solution for dynamic consent in biobanking

    Get PDF
    Dynamic consent aims to empower research partners and facilitate active participation in the research process. Used within the context of biobanking, it gives individuals access to information and control to determine how and where their biospecimens and data should be used. We present Dwarna—a web portal for ‘dynamic consent’ that acts as a hub connecting the different stakeholders of the Malta Biobank: biobank managers, researchers, research partners, and the general public. The portal stores research partners’ consent in a blockchain to create an immutable audit trail of research partners’ consent changes. Dwarna’s structure also presents a solution to the European Union’s General Data Protection Regulation’s right to erasure—a right that is seemingly incompatible with the blockchain model. Dwarna’s transparent structure increases trustworthiness in the biobanking process by giving research partners more control over which research studies they participate in, by facilitating the withdrawal of consent and by making it possible to request that the biospecimen and associated data are destroyed.peer-reviewe

    Evaluation of patient perception towards dynamic health data sharing using blockchain based digital consent with the Dovetail digital consent application : a cross sectional exploratory study

    Get PDF
    Background New patient-centric integrated care models are enabled by the capability to exchange the patient’s data amongst stakeholders, who each specialise in different aspects of the patient’s care. This requires a robust, trusted and flexible mechanism for patients to offer consent to share their data. Furthermore, new IT technologies make it easier to give patients more control over their data, including the right to revoke consent. These characteristics challenge the traditional paper-based, single-organisation-led consent process. The Dovetail digital consent application uses a mobile application and blockchain based infrastructure to offer this capability, as part of a pilot allowing patients to have their data shared amongst digital tools, empowering patients to manage their condition within an integrated care setting. Objective To evaluate patient perceptions towards existing consent processes, and the Dovetail blockchain based digital consent application as a means to manage data sharing in the context of diabetes care. Method Patients with diabetes at a General Practitioner practice were recruited. Data were collected using focus groups and questionnaires. Thematic analysis of the focus group transcripts and descriptive statistics of the questionnaires was performed. Results There was a lack of understanding of existing consent processes in place, and many patients did not have any recollection of having previously given consent. The digital consent application received favourable feedback, with patients recognising the value of the capability offered by the application. Patients overwhelmingly favoured the digital consent application over existing practice. Conclusions Digital consent was received favourably, with patients recognising that it addresses the main limitations of the current process. Feedback on potential improvements was received. Future work includes confirmation of results in a broader demographic sample and across multiple conditions

    Identifying healthcare actors involved in the adoption of information systems

    Get PDF
    The adoption of information systems in healthcare is no less significant than in any other commercial or caring organisation. The literature on IS adoption in healthcare, makes it clear that the actors involved in the adoption process are almost universally seen as crucial, which matches our research results too. However, how such actors should be identified remains a topic for investigatory work since these are early days in achieving this. We derive and propose a structured method to model how actors might be identified: structured because such a rationale is explicable and such a method is more readily usable when transferred to others. Our structured method, named IGOHcaps, uses a static and then a dynamic step to pull out the individual, group, organisational and human determinants of the critical actors. In this process, the individual actors’ differing views emerge which could enable decision-making bodies to produce more robust proposals if they incorporated some of the appropriate views. We discuss the application of IGOHcaps through a hospital case study. While a single case study cannot be a proof, the engagement of the actors was encouraging

    Authorization and access control of application data in Workflow systems

    Get PDF
    Workflow Management Systems (WfMSs) are used to support the modeling and coordinated execution of business processes within an organization or across organizational boundaries. Although some research efforts have addressed requirements for authorization and access control for workflow systems, little attention has been paid to the requirements as they apply to application data accessed or managed by WfMSs. In this paper, we discuss key access control requirements for application data in workflow applications using examples from the healthcare domain, introduce a classification of application data used in workflow systems by analyzing their sources, and then propose a comprehensive data authorization and access control mechanism for WfMSs. This involves four aspects: role, task, process instance-based user group, and data content. For implementation, a predicate-based access control method is used. We believe that the proposed model is applicable to workflow applications and WfMSs with diverse access control requirements

    An authorization policy management framework for dynamic medical data sharing

    Full text link
    In this paper, we propose a novel feature reduction approach to group words hierarchically into clusters which can then be used as new features for document classification. Initially, each word constitutes a cluster. We calculate the mutual confidence between any two different words. The pair of clusters containing the two words with the highest mutual confidence are combined into a new cluster. This process of merging is iterated until all the mutual confidences between the un-processed pair of words are smaller than a predefined threshold or only one cluster exists. In this way, a hierarchy of word clusters is obtained. The user can decide the clusters, from a certain level, to be used as new features for document classification. Experimental results have shown that our method can perform better than other methods.<br /
    • …
    corecore