33,453 research outputs found

    Towards an Intelligent Tutor for Mathematical Proofs

    Get PDF
    Computer-supported learning is an increasingly important form of study since it allows for independent learning and individualized instruction. In this paper, we discuss a novel approach to developing an intelligent tutoring system for teaching textbook-style mathematical proofs. We characterize the particularities of the domain and discuss common ITS design models. Our approach is motivated by phenomena found in a corpus of tutorial dialogs that were collected in a Wizard-of-Oz experiment. We show how an intelligent tutor for textbook-style mathematical proofs can be built on top of an adapted assertion-level proof assistant by reusing representations and proof search strategies originally developed for automated and interactive theorem proving. The resulting prototype was successfully evaluated on a corpus of tutorial dialogs and yields good results.Comment: In Proceedings THedu'11, arXiv:1202.453

    An Institutional Framework for Heterogeneous Formal Development in UML

    Get PDF
    We present a framework for formal software development with UML. In contrast to previous approaches that equip UML with a formal semantics, we follow an institution based heterogeneous approach. This can express suitable formal semantics of the different UML diagram types directly, without the need to map everything to one specific formalism (let it be first-order logic or graph grammars). We show how different aspects of the formal development process can be coherently formalised, ranging from requirements over design and Hoare-style conditions on code to the implementation itself. The framework can be used to verify consistency of different UML diagrams both horizontally (e.g., consistency among various requirements) as well as vertically (e.g., correctness of design or implementation w.r.t. the requirements)

    A CNL for Contract-Oriented Diagrams

    Full text link
    We present a first step towards a framework for defining and manipulating normative documents or contracts described as Contract-Oriented (C-O) Diagrams. These diagrams provide a visual representation for such texts, giving the possibility to express a signatory's obligations, permissions and prohibitions, with or without timing constraints, as well as the penalties resulting from the non-fulfilment of a contract. This work presents a CNL for verbalising C-O Diagrams, a web-based tool allowing editing in this CNL, and another for visualising and manipulating the diagrams interactively. We then show how these proof-of-concept tools can be used by applying them to a small example

    Improving the translation environment for professional translators

    Get PDF
    When using computer-aided translation systems in a typical, professional translation workflow, there are several stages at which there is room for improvement. The SCATE (Smart Computer-Aided Translation Environment) project investigated several of these aspects, both from a human-computer interaction point of view, as well as from a purely technological side. This paper describes the SCATE research with respect to improved fuzzy matching, parallel treebanks, the integration of translation memories with machine translation, quality estimation, terminology extraction from comparable texts, the use of speech recognition in the translation process, and human computer interaction and interface design for the professional translation environment. For each of these topics, we describe the experiments we performed and the conclusions drawn, providing an overview of the highlights of the entire SCATE project

    Engineering Crowdsourced Stream Processing Systems

    Full text link
    A crowdsourced stream processing system (CSP) is a system that incorporates crowdsourced tasks in the processing of a data stream. This can be seen as enabling crowdsourcing work to be applied on a sample of large-scale data at high speed, or equivalently, enabling stream processing to employ human intelligence. It also leads to a substantial expansion of the capabilities of data processing systems. Engineering a CSP system requires the combination of human and machine computation elements. From a general systems theory perspective, this means taking into account inherited as well as emerging properties from both these elements. In this paper, we position CSP systems within a broader taxonomy, outline a series of design principles and evaluation metrics, present an extensible framework for their design, and describe several design patterns. We showcase the capabilities of CSP systems by performing a case study that applies our proposed framework to the design and analysis of a real system (AIDR) that classifies social media messages during time-critical crisis events. Results show that compared to a pure stream processing system, AIDR can achieve a higher data classification accuracy, while compared to a pure crowdsourcing solution, the system makes better use of human workers by requiring much less manual work effort

    Between Sense and Sensibility: Declarative narrativisation of mental models as a basis and benchmark for visuo-spatial cognition and computation focussed collaborative cognitive systems

    Full text link
    What lies between `\emph{sensing}' and `\emph{sensibility}'? In other words, what kind of cognitive processes mediate sensing capability, and the formation of sensible impressions ---e.g., abstractions, analogies, hypotheses and theory formation, beliefs and their revision, argument formation--- in domain-specific problem solving, or in regular activities of everyday living, working and simply going around in the environment? How can knowledge and reasoning about such capabilities, as exhibited by humans in particular problem contexts, be used as a model and benchmark for the development of collaborative cognitive (interaction) systems concerned with human assistance, assurance, and empowerment? We pose these questions in the context of a range of assistive technologies concerned with \emph{visuo-spatial perception and cognition} tasks encompassing aspects such as commonsense, creativity, and the application of specialist domain knowledge and problem-solving thought processes. Assistive technologies being considered include: (a) human activity interpretation; (b) high-level cognitive rovotics; (c) people-centred creative design in domains such as architecture & digital media creation, and (d) qualitative analyses geographic information systems. Computational narratives not only provide a rich cognitive basis, but they also serve as a benchmark of functional performance in our development of computational cognitive assistance systems. We posit that computational narrativisation pertaining to space, actions, and change provides a useful model of \emph{visual} and \emph{spatio-temporal thinking} within a wide-range of problem-solving tasks and application areas where collaborative cognitive systems could serve an assistive and empowering function.Comment: 5 pages, research statement summarising recent publication

    An incremental development of the Mondex system in Event-B

    No full text
    A development of the Mondex system was undertaken using Event-B and its associated proof tools. An incremental approach was used whereby the refinement between the abstract specification of the system and its detailed design was verified through a series of refinements. The consequence of this incremental approach was that we achieved a very high degree of automatic proof. The essential features of our development are outlined. We also present some modelling and proof guidelines that we found helped us gain a deep understanding of the system and achieve the high degree of automatic proo

    Dialogue Act Modeling for Automatic Tagging and Recognition of Conversational Speech

    Get PDF
    We describe a statistical approach for modeling dialogue acts in conversational speech, i.e., speech-act-like units such as Statement, Question, Backchannel, Agreement, Disagreement, and Apology. Our model detects and predicts dialogue acts based on lexical, collocational, and prosodic cues, as well as on the discourse coherence of the dialogue act sequence. The dialogue model is based on treating the discourse structure of a conversation as a hidden Markov model and the individual dialogue acts as observations emanating from the model states. Constraints on the likely sequence of dialogue acts are modeled via a dialogue act n-gram. The statistical dialogue grammar is combined with word n-grams, decision trees, and neural networks modeling the idiosyncratic lexical and prosodic manifestations of each dialogue act. We develop a probabilistic integration of speech recognition with dialogue modeling, to improve both speech recognition and dialogue act classification accuracy. Models are trained and evaluated using a large hand-labeled database of 1,155 conversations from the Switchboard corpus of spontaneous human-to-human telephone speech. We achieved good dialogue act labeling accuracy (65% based on errorful, automatically recognized words and prosody, and 71% based on word transcripts, compared to a chance baseline accuracy of 35% and human accuracy of 84%) and a small reduction in word recognition error.Comment: 35 pages, 5 figures. Changes in copy editing (note title spelling changed
    corecore