700 research outputs found

    The Role of Deontic Logic in the Specification of Information Systems

    Get PDF
    In this paper we discuss the role that deontic logic plays in the specification of information systems, either because constraints on the systems directly concern norms or, and even more importantly, system constraints are considered ideal but violable (so-called `soft¿ constraints).\ud To overcome the traditional problems with deontic logic (the so-called paradoxes), we first state the importance of distinguishing between ought-to-be and ought-to-do constraints and next focus on the most severe paradox, the so-called Chisholm paradox, involving contrary-to-duty norms. We present a multi-modal extension of standard deontic logic (SDL) to represent the ought-to-be version of the Chisholm set properly. For the ought-to-do variant we employ a reduction to dynamic logic, and show how the Chisholm set can be treated adequately in this setting. Finally we discuss a way of integrating both ought-to-be and ought-to-do reasoning, enabling one to draw conclusions from ought-to-be constraints to ought-to-do ones, and show by an example the use(fulness) of this

    Historical overview of formal argumentation

    Get PDF

    A hybrid approach for modeling uncertainty in terminological logics

    Get PDF
    This paper proposes a probabilistic extension of terminological logics. The extension maintains the original performance of drawing inferences in a hierarchy of terminological definitions. It enlarges the range of applicability to real world domains determined not only by definitional but also by uncertain knowledge. First, we introduce the propositionally complete terminological language ALC. On the basis of the language construct "probabilistic implication" it is shown how statistical information on concept dependencies can be represented. To guarantee (terminological and probabilistic) consistency, several requirements have to be met. Moreover, these requirements allow one to infer implicitly existent probabilistic relationships and their quantitative computation. By explicitly introducing restrictions for the ranges derived by instantiating the consistency requirements, exceptions can also be handled. In the categorical cases this corresponds to the overriding of properties in non monotonic inheritance networks. Consequently, our model applies to domains where both term descriptions and non-categorical relations between term extensions have to be represented

    Reasoning in non-probabilistic uncertainty: logic programming and neural-symbolic computing as examples

    Get PDF
    This article aims to achieve two goals: to show that probability is not the only way of dealing with uncertainty (and even more, that there are kinds of uncertainty which are for principled reasons not addressable with probabilistic means); and to provide evidence that logic-based methods can well support reasoning with uncertainty. For the latter claim, two paradigmatic examples are presented: Logic Programming with Kleene semantics for modelling reasoning from information in a discourse, to an interpretation of the state of affairs of the intended model, and a neural-symbolic implementation of Input/Output logic for dealing with uncertainty in dynamic normative context

    Historical overview of formal argumentation

    Get PDF

    Exploiting Deep Semantics and Compositionality of Natural Language for Human-Robot-Interaction

    Full text link
    We develop a natural language interface for human robot interaction that implements reasoning about deep semantics in natural language. To realize the required deep analysis, we employ methods from cognitive linguistics, namely the modular and compositional framework of Embodied Construction Grammar (ECG) [Feldman, 2009]. Using ECG, robots are able to solve fine-grained reference resolution problems and other issues related to deep semantics and compositionality of natural language. This also includes verbal interaction with humans to clarify commands and queries that are too ambiguous to be executed safely. We implement our NLU framework as a ROS package and present proof-of-concept scenarios with different robots, as well as a survey on the state of the art

    A Logic Programming Approach to Knowledge-State Planning: Semantics and Complexity

    Full text link
    We propose a new declarative planning language, called K, which is based on principles and methods of logic programming. In this language, transitions between states of knowledge can be described, rather than transitions between completely described states of the world, which makes the language well-suited for planning under incomplete knowledge. Furthermore, it enables the use of default principles in the planning process by supporting negation as failure. Nonetheless, K also supports the representation of transitions between states of the world (i.e., states of complete knowledge) as a special case, which shows that the language is very flexible. As we demonstrate on particular examples, the use of knowledge states may allow for a natural and compact problem representation. We then provide a thorough analysis of the computational complexity of K, and consider different planning problems, including standard planning and secure planning (also known as conformant planning) problems. We show that these problems have different complexities under various restrictions, ranging from NP to NEXPTIME in the propositional case. Our results form the theoretical basis for the DLV^K system, which implements the language K on top of the DLV logic programming system.Comment: 48 pages, appeared as a Technical Report at KBS of the Vienna University of Technology, see http://www.kr.tuwien.ac.at/research/reports

    Hybrid knowledge systems

    Get PDF
    An architecture called hybrid knowledge system (HKS) is described that can be used to interoperate between a specification of the control laws describing a physical system, a collection of databases, knowledge bases and/or other data structures reflecting information about the world in which the physical system controlled resides, observations (e.g. sensor information) from the external world, and actions that must be taken in response to external observations

    Super Logic Programs

    Full text link
    The Autoepistemic Logic of Knowledge and Belief (AELB) is a powerful nonmonotic formalism introduced by Teodor Przymusinski in 1994. In this paper, we specialize it to a class of theories called `super logic programs'. We argue that these programs form a natural generalization of standard logic programs. In particular, they allow disjunctions and default negation of arbibrary positive objective formulas. Our main results are two new and powerful characterizations of the static semant ics of these programs, one syntactic, and one model-theoretic. The syntactic fixed point characterization is much simpler than the fixed point construction of the static semantics for arbitrary AELB theories. The model-theoretic characterization via Kripke models allows one to construct finite representations of the inherently infinite static expansions. Both characterizations can be used as the basis of algorithms for query answering under the static semantics. We describe a query-answering interpreter for super programs which we developed based on the model-theoretic characterization and which is available on the web.Comment: 47 pages, revised version of the paper submitted 10/200
    corecore