19,869 research outputs found

    Towards Detecting Compromised Accounts on Social Networks

    Get PDF
    Compromising social network accounts has become a profitable course of action for cybercriminals. By hijacking control of a popular media or business account, attackers can distribute their malicious messages or disseminate fake information to a large user base. The impacts of these incidents range from a tarnished reputation to multi-billion dollar monetary losses on financial markets. In our previous work, we demonstrated how we can detect large-scale compromises (i.e., so-called campaigns) of regular online social network users. In this work, we show how we can use similar techniques to identify compromises of individual high-profile accounts. High-profile accounts frequently have one characteristic that makes this detection reliable -- they show consistent behavior over time. We show that our system, were it deployed, would have been able to detect and prevent three real-world attacks against popular companies and news agencies. Furthermore, our system, in contrast to popular media, would not have fallen for a staged compromise instigated by a US restaurant chain for publicity reasons

    POISED: Spotting Twitter Spam Off the Beaten Paths

    Get PDF
    Cybercriminals have found in online social networks a propitious medium to spread spam and malicious content. Existing techniques for detecting spam include predicting the trustworthiness of accounts and analyzing the content of these messages. However, advanced attackers can still successfully evade these defenses. Online social networks bring people who have personal connections or share common interests to form communities. In this paper, we first show that users within a networked community share some topics of interest. Moreover, content shared on these social network tend to propagate according to the interests of people. Dissemination paths may emerge where some communities post similar messages, based on the interests of those communities. Spam and other malicious content, on the other hand, follow different spreading patterns. In this paper, we follow this insight and present POISED, a system that leverages the differences in propagation between benign and malicious messages on social networks to identify spam and other unwanted content. We test our system on a dataset of 1.3M tweets collected from 64K users, and we show that our approach is effective in detecting malicious messages, reaching 91% precision and 93% recall. We also show that POISED's detection is more comprehensive than previous systems, by comparing it to three state-of-the-art spam detection systems that have been proposed by the research community in the past. POISED significantly outperforms each of these systems. Moreover, through simulations, we show how POISED is effective in the early detection of spam messages and how it is resilient against two well-known adversarial machine learning attacks

    Detecting and characterizing lateral phishing at scale

    Get PDF
    We present the first large-scale characterization of lateral phishing attacks, based on a dataset of 113 million employee-sent emails from 92 enterprise organizations. In a lateral phishing attack, adversaries leverage a compromised enterprise account to send phishing emails to other users, benefit-ting from both the implicit trust and the information in the hijacked user's account. We develop a classifier that finds hundreds of real-world lateral phishing emails, while generating under four false positives per every one-million employee-sent emails. Drawing on the attacks we detect, as well as a corpus of user-reported incidents, we quantify the scale of lateral phishing, identify several thematic content and recipient targeting strategies that attackers follow, illuminate two types of sophisticated behaviors that attackers exhibit, and estimate the success rate of these attacks. Collectively, these results expand our mental models of the 'enterprise attacker' and shed light on the current state of enterprise phishing attacks

    Measuring, Characterizing, and Detecting Facebook Like Farms

    Get PDF
    Social networks offer convenient ways to seamlessly reach out to large audiences. In particular, Facebook pages are increasingly used by businesses, brands, and organizations to connect with multitudes of users worldwide. As the number of likes of a page has become a de-facto measure of its popularity and profitability, an underground market of services artificially inflating page likes, aka like farms, has emerged alongside Facebook's official targeted advertising platform. Nonetheless, there is little work that systematically analyzes Facebook pages' promotion methods. Aiming to fill this gap, we present a honeypot-based comparative measurement study of page likes garnered via Facebook advertising and from popular like farms. First, we analyze likes based on demographic, temporal, and social characteristics, and find that some farms seem to be operated by bots and do not really try to hide the nature of their operations, while others follow a stealthier approach, mimicking regular users' behavior. Next, we look at fraud detection algorithms currently deployed by Facebook and show that they do not work well to detect stealthy farms which spread likes over longer timespans and like popular pages to mimic regular users. To overcome their limitations, we investigate the feasibility of timeline-based detection of like farm accounts, focusing on characterizing content generated by Facebook accounts on their timelines as an indicator of genuine versus fake social activity. We analyze a range of features, grouped into two main categories: lexical and non-lexical. We find that like farm accounts tend to re-share content, use fewer words and poorer vocabulary, and more often generate duplicate comments and likes compared to normal users. Using relevant lexical and non-lexical features, we build a classifier to detect like farms accounts that achieves precision higher than 99% and 93% recall.Comment: To appear in ACM Transactions on Privacy and Security (TOPS
    • …
    corecore