383 research outputs found

    The platformer experience dataset

    Get PDF
    Player modeling and estimation of player experience have become very active research fields within affective computing, human computer interaction, and game artificial intelligence in recent years. For advancing our knowledge and understanding on player experience this paper introduces the Platformer Experience Dataset (PED) - the first open-access game experience corpus - that contains multiple modalities of user data of Super Mario Bros players. The open-access database aims to be used for player experience capture through context-based (i.e. game content), behavioral and visual recordings of platform game players. In addition, the database contains demographical data of the players and self-reported annotations of experience in two forms: ratings and ranks. PED opens up the way to desktop and console games that use video from webcameras and visual sensors and offer possibilities for holistic player experience modeling approaches that can, in turn, yield richer game personalization.peer-reviewe

    The platformer experience dataset

    Full text link

    Advancing performability in playable media : a simulation-based interface as a dynamic score

    Get PDF
    When designing playable media with non-game orientation, alternative play scenarios to gameplay scenarios must be accompanied by alternative mechanics to game mechanics. Problems of designing playable media with non-game orientation are stated as the problems of designing a platform for creative explorations and creative expressions. For such design problems, two requirements are articulated: 1) play state transitions must be dynamic in non-trivial ways in order to achieve a significant level of engagement, and 2) pathways for players’ experience from exploration to expression must be provided. The transformative pathway from creative exploration to creative expression is analogous to pathways for game players’ skill acquisition in gameplay. The paper first describes a concept of simulation-based interface, and then binds that concept with the concept of dynamic score. The former partially accounts for the first requirement, the latter the second requirement. The paper describes the prototype and realization of the two concepts’ binding. “Score” is here defined as a representation of cue organization through a transmodal abstraction. A simulation based interface is presented with swarm mechanics and its function as a dynamic score is demonstrated with an interactive musical composition and performance

    Unmasking Clever Hans Predictors and Assessing What Machines Really Learn

    Full text link
    Current learning machines have successfully solved hard application problems, reaching high accuracy and displaying seemingly "intelligent" behavior. Here we apply recent techniques for explaining decisions of state-of-the-art learning machines and analyze various tasks from computer vision and arcade games. This showcases a spectrum of problem-solving behaviors ranging from naive and short-sighted, to well-informed and strategic. We observe that standard performance evaluation metrics can be oblivious to distinguishing these diverse problem solving behaviors. Furthermore, we propose our semi-automated Spectral Relevance Analysis that provides a practically effective way of characterizing and validating the behavior of nonlinear learning machines. This helps to assess whether a learned model indeed delivers reliably for the problem that it was conceived for. Furthermore, our work intends to add a voice of caution to the ongoing excitement about machine intelligence and pledges to evaluate and judge some of these recent successes in a more nuanced manner.Comment: Accepted for publication in Nature Communication

    Designer modeling for personalized game content creation tools

    Get PDF
    With the growing use of automated content creation and computer-aided design tools in game development, there is potential for enhancing the design process through personalized interactions between the software and the game developer. This paper proposes designer modeling for capturing the designer’s preferences, goals and processes from their interaction with a computer- aided design tool, and suggests methods and domains within game development where such a model can be applied. We describe how designer modeling could be integrated with current work on automated and mixed- initiative content creation, and envision future directions which focus on personalizing the processes to a designer’s particular wishes.peer-reviewe

    Deep Unsupervised Multi-View Detection of Video Game Stream Highlights

    Get PDF
    We consider the problem of automatic highlight-detection in video game streams. Currently, the vast majority of highlight-detection systems for games are triggered by the occurrence of hard-coded game events (e.g., score change, end-game), while most advanced tools and techniques are based on detection of highlights via visual analysis of game footage. We argue that in the context of game streaming, events that may constitute highlights are not only dependent on game footage, but also on social signals that are conveyed by the streamer during the play session (e.g., when interacting with viewers, or when commenting and reacting to the game). In this light, we present a multi-view unsupervised deep learning methodology for novelty-based highlight detection. The method jointly analyses both game footage and social signals such as the players facial expressions and speech, and shows promising results for generating highlights on streams of popular games such as Player Unknown's Battlegrounds

    Learning analytics and psychophysiology : understanding the learning process in a STEM game

    Get PDF
    This study focuses on the exploration of player experience in educational games and its potential impact on predicting learning outcomes. Specifically, the research aims to investigate the connection psychophysiology data, obtained through a summative study involving nine participants, and the results of a learning analytics model derived from a larger field test. The study incorporates eye tracking and electrodermal activity data to gain insights into the predictive power of this data. Through the analysis of player experience data, the study sheds light on the factors that contribute to effective educational game design. By examining the eye tracking and EDA data, the researchers explored the participants' engagement levels, attention patterns, and emotional arousal during gameplay. These findings revealed a connection between spikes of visual attention and EDA during interactions with character faces as well as in game cinematics. In conclusion, the outcomes of this study provide valuable insights for future educational game designers. By understanding the relationship between user experience indicators and learning analytics, designers can tailor game elements to enhance engagement, attention, and emotional arousal, ultimately leading to improved learning outcomes. The integration of eye tracking and EDA data in user experience studies adds a new dimension to the evaluation and design of educational games. The findings pave the way for future research in the field and highlight the importance of considering user experience as a crucial factor in educational game design and development.Includes bibliographical references

    A Person-Centric Design Framework for At-Home Motor Learning in Serious Games

    Get PDF
    abstract: In motor learning, real-time multi-modal feedback is a critical element in guided training. Serious games have been introduced as a platform for at-home motor training due to their highly interactive and multi-modal nature. This dissertation explores the design of a multimodal environment for at-home training in which an autonomous system observes and guides the user in the place of a live trainer, providing real-time assessment, feedback and difficulty adaptation as the subject masters a motor skill. After an in-depth review of the latest solutions in this field, this dissertation proposes a person-centric approach to the design of this environment, in contrast to the standard techniques implemented in related work, to address many of the limitations of these approaches. The unique advantages and restrictions of this approach are presented in the form of a case study in which a system entitled the "Autonomous Training Assistant" consisting of both hardware and software for guided at-home motor learning is designed and adapted for a specific individual and trainer. In this work, the design of an autonomous motor learning environment is approached from three areas: motor assessment, multimodal feedback, and serious game design. For motor assessment, a 3-dimensional assessment framework is proposed which comprises of 2 spatial (posture, progression) and 1 temporal (pacing) domains of real-time motor assessment. For multimodal feedback, a rod-shaped device called the "Intelligent Stick" is combined with an audio-visual interface to provide feedback to the subject in three domains (audio, visual, haptic). Feedback domains are mapped to modalities and feedback is provided whenever the user's performance deviates from the ideal performance level by an adaptive threshold. Approaches for multi-modal integration and feedback fading are discussed. Finally, a novel approach for stealth adaptation in serious game design is presented. This approach allows serious games to incorporate motor tasks in a more natural way, facilitating self-assessment by the subject. An evaluation of three different stealth adaptation approaches are presented and evaluated using the flow-state ratio metric. The dissertation concludes with directions for future work in the integration of stealth adaptation techniques across the field of exergames.Dissertation/ThesisDoctoral Dissertation Computer Science 201
    • …
    corecore