25 research outputs found

    Extending and Relating Semantic Models of Compensating CSP

    No full text
    Business transactions involve multiple partners coordinating and interacting with each other. These transactions have hierarchies of activities which need to be orchestrated. Usual database approaches (e.g.,checkpoint, rollback) are not applicable to handle faults in a long running transaction due to interaction with multiple partners. The compensation mechanism handles faults that can arise in a long running transaction. Based on the framework of Hoare's CSP process algebra, Butler et al introduced Compensating CSP (cCSP), a language to model long-running transactions. The language introduces a method to declare a transaction as a process and it has constructs for orchestration of compensation. Butler et al also defines a trace semantics for cCSP. In this thesis, the semantic models of compensating CSP are extended by defining an operational semantics, describing how the state of a program changes during its execution. The semantics is encoded into Prolog to animate the specification. The semantic models are further extended to define the synchronisation of processes. The notion of partial behaviour is defined to model the behaviour of deadlock that arises during process synchronisation. A correspondence relationship is then defined between the semantic models and proved by using structural induction. Proving the correspondence means that any of the presentation can be accepted as a primary definition of the meaning of the language and each definition can be used correctly at different times, and for different purposes. The semantic models and their relationships are mechanised by using the theorem prover PVS. The semantic models are embedded in PVS by using Shallow embedding. The relationships between semantic models are proved by mutual structural induction. The mechanisation overcomes the problems in hand proofs and improves the scalability of the approach

    A UTP semantics for communicating processes with shared variables and its formal encoding in PVS

    Get PDF
    CSP# (communicating sequential programs) is a modelling language designed for specifying concurrent systems by integrating CSP-like compositional operators with sequential programs updating shared variables. In this work, we define an observation-oriented denotational semantics in an open environment for the CSP# language based on the UTP framework. To deal with shared variables, we lift traditional event-based traces into mixed traces which consist of state-event pairs for recording process behaviours. To capture all possible concurrency behaviours between action/channel-based communications and global shared variables, we construct a comprehensive set of rules on merging traces from processes which run in parallel/interleaving. We also define refinement to check process equivalence and present a set of algebraic laws which are established based on our denotational semantics. We further encode our proposed denotational semantics into the PVS theorem prover. The encoding not only ensures the semantic consistency, but also builds up a theoretic foundation for machine-assisted verification of CSP# specifications.Full Tex

    Comparative Studies, Formal Semantics and PVS Encoding of CSP#

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Extending and relating semantic models of compensating CSP

    Get PDF
    Business transactions involve multiple partners coordinating and interacting with each other. These transactions have hierarchies of activities which need to be orchestrated. Usual database approaches (e.g.,checkpoint, rollback) are not applicable to handle faults in a long running transaction due to interaction with multiple partners. The compensation mechanism handles faults that can arise in a long running transaction. Based on the framework of Hoare's CSP process algebra, Butler et al introduced Compensating CSP (cCSP), a language to model long-running transactions. The language introduces a method to declare a transaction as a process and it has constructs for orchestration of compensation. Butler et al also defines a trace semantics for cCSP. In this thesis, the semantic models of compensating CSP are extended by defining an operational semantics, describing how the state of a program changes during its execution. The semantics is encoded into Prolog to animate the specification. The semantic models are further extended to define the synchronisation of processes. The notion of partial behaviour is defined to model the behaviour of deadlock that arises during process synchronisation. A correspondence relationship is then defined between the semantic models and proved by using structural induction. Proving the correspondence means that any of the presentation can be accepted as a primary definition of the meaning of the language and each definition can be used correctly at different times, and for different purposes. The semantic models and their relationships are mechanised by using the theorem prover PVS. The semantic models are embedded in PVS by using Shallow embedding. The relationships between semantic models are proved by mutual structural induction. The mechanisation overcomes the problems in hand proofs and improves the scalability of the approach.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Probabilistic Interval Temporal Logic and Duration Calculus with Infinite Intervals: Complete Proof Systems

    Full text link
    The paper presents probabilistic extensions of interval temporal logic (ITL) and duration calculus (DC) with infinite intervals and complete Hilbert-style proof systems for them. The completeness results are a strong completeness theorem for the system of probabilistic ITL with respect to an abstract semantics and a relative completeness theorem for the system of probabilistic DC with respect to real-time semantics. The proposed systems subsume probabilistic real-time DC as known from the literature. A correspondence between the proposed systems and a system of probabilistic interval temporal logic with finite intervals and expanding modalities is established too.Comment: 43 page

    Correct synthesis and integration of compiler-generated function units

    Get PDF
    PhD ThesisComputer architectures can use custom logic in addition to general pur- pose processors to improve performance for a variety of applications. The use of custom logic allows greater parallelism for some algorithms. While conventional CPUs typically operate on words, ne-grained custom logic can improve e ciency for many bit level operations. The commodi ca- tion of eld programmable devices, particularly FPGAs, has improved the viability of using custom logic in an architecture. This thesis introduces an approach to reasoning about the correctness of compilers that generate custom logic that can be synthesized to provide hardware acceleration for a given application. Compiler intermediate representations (IRs) and transformations that are relevant to genera- tion of custom logic are presented. Architectures may vary in the way that custom logic is incorporated, and suitable abstractions are used in order that the results apply to compilation for a variety of the design parameters that are introduced by the use of custom logic

    Emerging trends proceedings of the 17th International Conference on Theorem Proving in Higher Order Logics: TPHOLs 2004

    Get PDF
    technical reportThis volume constitutes the proceedings of the Emerging Trends track of the 17th International Conference on Theorem Proving in Higher Order Logics (TPHOLs 2004) held September 14-17, 2004 in Park City, Utah, USA. The TPHOLs conference covers all aspects of theorem proving in higher order logics as well as related topics in theorem proving and verification. There were 42 papers submitted to TPHOLs 2004 in the full research cate- gory, each of which was refereed by at least 3 reviewers selected by the program committee. Of these submissions, 21 were accepted for presentation at the con- ference and publication in volume 3223 of Springer?s Lecture Notes in Computer Science series. In keeping with longstanding tradition, TPHOLs 2004 also offered a venue for the presentation of work in progress, where researchers invite discussion by means of a brief introductory talk and then discuss their work at a poster session. The work-in-progress papers are held in this volume, which is published as a 2004 technical report of the School of Computing at the University of Utah

    Programmiersprachen und Rechenkonzepte

    Get PDF
    Seit 1984 veranstaltet die GI--Fachgruppe "Programmiersprachen und Rechenkonzepte" regelmäßig im Frühjahr einen Workshop im Physikzentrum Bad Honnef. Das Treffen dient in erster Linie dem gegenseitigen Kennenlernen, dem Erfahrungsaustausch, der Diskussion und der Vertiefung gegenseitiger Kontakte

    Cell libraries and verification

    Get PDF
    Digital electronic devices are often implemented using cell libraries to provide the basic logic elements, such as Boolean functions and on-chip memories. To be usable both during the development of chips, which is usually done in a hardware definition language, and for the final layout, which consists of lithographic masks, cells are described in multiple ways. Among these, there are multiple descriptions of the behavior of cells, for example one at the level of hardware definition languages, and another one in terms of transistors that are ultimately produced. Thus, correct functioning of the device depends also on the correctness of the cell library, requiring all views of a cell to correspond with each other. In this thesis, techniques are presented to verify some of these correspondences in cell libraries. First, a technique is presented to check that the functional description in a hardware definition language and the transistor netlist description implement the same behavior. For this purpose, a semantics is defined for the commonly used subset of the hardware definition language Verilog. This semantics is encoded into Boolean equations, which can also be extracted from a transistor netlist. A model checker is then used to prove equivalence of these two descriptions, or to provide a counterexample showing that they are different. Also in basic elements such as cells, there exists non-determinism reflecting internal behavior that cannot be controlled from the outside. It is however desired that such internal behavior does not lead to different externally observable behavior, i.e., to different computation results. This thesis presents a technique to efficiently check, both for hardware definition language descriptions and transistor netlist descriptions, whether non-determinism does have an effect on the observable computation or not. Power consumption of chips has become a very important topic, especially since devices become mobile and therefore are battery powered. Thus, in order to predict and to maximize battery life, the power consumption of cells should be measured and reduced in an efficient way. To achieve these goals, this thesis also takes the power consumption into account when analyzing non-deterministic behavior. Then, on the one hand, behaviors consuming the same amount of power have to be measured only once. On the other hand, functionally equivalent computations can be forced to consume the least amount of power without affecting the externally observable behavior of the cell, for example by introducing appropriate delays. A way to prevent externally observable non-deterministic behavior in practical hardware designs is by adding timing checks. These checks rule out certain input patterns which must not be generated by the environment of a cell. If an input pattern can be found that is not forbidden by any of the timing checks, yet allows non-deterministic behavior, then the cell’s environment is not sufficiently restricted and hence this usually indicates a forgotten timing check. Therefore, the check for non-determinism is extended to also respect these timing checks and to consider only counterexamples that are not ruled out. If such a counterexample can be found, then it gives an indication what timing checks need to be added. Because current hardware designs run at very high speeds, timing analysis of cells has become a very important issue. For this purpose, cell libraries include a description of the delay arcs present in a cell, giving an amount of time it takes for an input change to have propagated to the outputs of a cell. Also for these descriptions, it is desired that they reflect the actual behavior in the cell. On the one hand, a delay arc that never manifests itself may result in a clock frequency that is lower than necessary. On the other hand, a forgotten delay arc can cause the clock frequency being too high, impairing functioning of the final chip. To relate the functional description of a cell with its timing specification, this thesis presents techniques to check whether delay arcs are consistent with the functionality, and which list all possible delay arcs. Computing new output values of a cell given some new input values requires all connections among the transistors in a cell to obtain stable values. Hitherto it was assumed that such a stable situation will always be reached eventually. To actually check this, a wire is abstracted into a sequence of stable values. Using this abstraction, checking whether stable situations are always reached is reduced to analyzing that an infinite sequence of such stable values exists. This is known in the term rewriting literature as productivity, the infinitary equivalent to termination. The final contribution in this thesis are techniques to automatically prove productivity. For this purpose, existing termination proving tools for term rewriting are re-used to benefit from their tremendous strength and their continuous improvements
    corecore