65,859 research outputs found

    A framework for developing engineering design ontologies within the aerospace industry

    Get PDF
    This paper presents a framework for developing engineering design ontologies within the aerospace industry. The aim of this approach is to strengthen the modularity and reuse of engineering design ontologies to support knowledge management initiatives within the aerospace industry. Successful development and effective utilisation of engineering ontologies strongly depends on the method/framework used to develop them. Ensuring modularity in ontology design is essential for engineering design activities due to the complexity of knowledge that is required to be brought together to support the product design decision-making process. The proposed approach adopts best practices from previous ontology development methods, but focuses on encouraging modular architectural ontology design. The framework is comprised of three phases namely: (1) Ontology design and development; (2) Ontology validation and (3) Implementation of ontology structure. A qualitative research methodology is employed which is composed of four phases. The first phase defines the capture of knowledge required for the framework development, followed by the ontology framework development, iterative refinement of engineering ontologies and ontology validation through case studies and experts’ opinion. The ontology-based framework is applied in the combustor and casing aerospace engineering domain. The modular ontologies developed as a result of applying the framework and are used in a case study to restructure and improve the accessibility of information on a product design information-sharing platform. Additionally, domain experts within the aerospace industry validated the strengths, benefits and limitations of the framework. Due to the modular nature of the developed ontologies, they were also employed to support other project initiatives within the case study company such as role-based computing (RBC), IT modernisation activity and knowledge management implementation across the sponsoring organisation. The major benefit of this approach is in the reduction of man-hours required for maintaining engineering design ontologies. Furthermore, this approach strengthens reuse of ontology knowledge and encourages modularity in the design and development of engineering ontologies

    Special Session on Industry 4.0

    Get PDF
    No abstract available

    An experience of modularity through design

    Get PDF
    We aim to utilise the experiences of a marine industry-based design team to determine the need for research into a modular design methodology in an industrial environment. In order to achieve this we couple the outcome of a current design project with the findings of a recent literature survey with the objectives of firstly, clarifying why a methodology is required and, secondly, defining the key elements which the methodology would have to realise or address. The potential benefits of modularity have long been recognised in the shipbuilding industry. Many shipbuilders adopt a 'module' approach to ship construction whereby the ship structure is separated into a number of large structural 'blocks' to ease manufacture and manoeuvrability during construction. However, as understanding of the capabilities of modularity as a design tool develops there is increased interest in capitalising on the differing life phase benefits of modularity such as reduced design costs and time, increased ease of maintenance, upgrade, re-use, redesign and standardisation across individual products and product families. This is especially pertinent in naval shipbuilding where the maintenance of a class of ship requires that all previously designed ships in that class must be of similar outfitting and must be able to interface with the new ship, in terms of propulsion, weapons, communications and electronics, and thus often require some form of retrofit. Therefore, many shipbuilders are moving from viewing modularity as a purely 'manufacturing' principle to a design centred principle. However, as noted by Chang and Ward 'none of the design theories or tools in the mechanical world serves as an articulate procedure for designers to follow in practising modular design'. Thus, despite the identification of a need to introduce modular principles at an earlier stage than detail design and construction, there is little aid in the form of tools, techniques and methodologies for designers in practice

    Strategic perspectives on modularity

    Get PDF
    In this paper we argue that the debate on modularity has come to a point where a consensus is slowly emerging. However, we also contend that this consensus is clearly technology driven. In particular, no room is left for firm strategies. Typically, technology is considered as an exogenous variable to which firms have no choices but to adapt. Taking a slightly different perspective, our main objective is to offer a conceptual framework enabling to shed light on the role of corporate strategies in the process of modularization. From interviews with academic design engineers, we show that firms often consider product architecture as a critical variable to fit their strategic requirements. Based on design sciences, we build an original approach to product modularity. This approach, which leaves an important space for firms' strategic choices, proves also to seize a large part of the industrial reality of modularity. Our framework, which is a first step towards the consideration of strategies within the framework of modularity, gives an account for the diversity of industrial logics related to product modularization.product modularity ; corporate strategy ; technological determinism

    Designing Scalable Business Models

    Full text link
    Digital business models are often designed for rapid growth, and some relatively young companies have indeed achieved global scale. However despite the visibility and importance of this phenomenon, analysis of scale and scalability remains underdeveloped in management literature. When it is addressed, analysis of this phenomenon is often over-influenced by arguments about economies of scale in production and distribution. To redress this omission, this paper draws on economic, organization and technology management literature to provide a detailed examination of the sources of scaling in digital businesses. We propose three mechanisms by which digital business models attempt to gain scale: engaging both non- paying users and paying customers; organizing customer engagement to allow self- customization; and orchestrating networked value chains, such as platforms or multi-sided business models. Scaling conditions are discussed, and propositions developed and illustrated with examples of big data entrepreneurial firms

    Building Programmable Wireless Networks: An Architectural Survey

    Full text link
    In recent times, there have been a lot of efforts for improving the ossified Internet architecture in a bid to sustain unstinted growth and innovation. A major reason for the perceived architectural ossification is the lack of ability to program the network as a system. This situation has resulted partly from historical decisions in the original Internet design which emphasized decentralized network operations through co-located data and control planes on each network device. The situation for wireless networks is no different resulting in a lot of complexity and a plethora of largely incompatible wireless technologies. The emergence of "programmable wireless networks", that allow greater flexibility, ease of management and configurability, is a step in the right direction to overcome the aforementioned shortcomings of the wireless networks. In this paper, we provide a broad overview of the architectures proposed in literature for building programmable wireless networks focusing primarily on three popular techniques, i.e., software defined networks, cognitive radio networks, and virtualized networks. This survey is a self-contained tutorial on these techniques and its applications. We also discuss the opportunities and challenges in building next-generation programmable wireless networks and identify open research issues and future research directions.Comment: 19 page

    From a Competition for Self-Driving Miniature Cars to a Standardized Experimental Platform: Concept, Models, Architecture, and Evaluation

    Full text link
    Context: Competitions for self-driving cars facilitated the development and research in the domain of autonomous vehicles towards potential solutions for the future mobility. Objective: Miniature vehicles can bridge the gap between simulation-based evaluations of algorithms relying on simplified models, and those time-consuming vehicle tests on real-scale proving grounds. Method: This article combines findings from a systematic literature review, an in-depth analysis of results and technical concepts from contestants in a competition for self-driving miniature cars, and experiences of participating in the 2013 competition for self-driving cars. Results: A simulation-based development platform for real-scale vehicles has been adapted to support the development of a self-driving miniature car. Furthermore, a standardized platform was designed and realized to enable research and experiments in the context of future mobility solutions. Conclusion: A clear separation between algorithm conceptualization and validation in a model-based simulation environment enabled efficient and riskless experiments and validation. The design of a reusable, low-cost, and energy-efficient hardware architecture utilizing a standardized software/hardware interface enables experiments, which would otherwise require resources like a large real-scale test track.Comment: 17 pages, 19 figues, 2 table
    • …
    corecore