1,536 research outputs found

    Increasing resilience of ATM networks using traffic monitoring and automated anomaly analysis

    Get PDF
    Systematic network monitoring can be the cornerstone for the dependable operation of safety-critical distributed systems. In this paper, we present our vision for informed anomaly detection through network monitoring and resilience measurements to increase the operators' visibility of ATM communication networks. We raise the question of how to determine the optimal level of automation in this safety-critical context, and we present a novel passive network monitoring system that can reveal network utilisation trends and traffic patterns in diverse timescales. Using network measurements, we derive resilience metrics and visualisations to enhance the operators' knowledge of the network and traffic behaviour, and allow for network planning and provisioning based on informed what-if analysis

    A critical review of cyber-physical security for building automation systems

    Full text link
    Modern Building Automation Systems (BASs), as the brain that enables the smartness of a smart building, often require increased connectivity both among system components as well as with outside entities, such as optimized automation via outsourced cloud analytics and increased building-grid integrations. However, increased connectivity and accessibility come with increased cyber security threats. BASs were historically developed as closed environments with limited cyber-security considerations. As a result, BASs in many buildings are vulnerable to cyber-attacks that may cause adverse consequences, such as occupant discomfort, excessive energy usage, and unexpected equipment downtime. Therefore, there is a strong need to advance the state-of-the-art in cyber-physical security for BASs and provide practical solutions for attack mitigation in buildings. However, an inclusive and systematic review of BAS vulnerabilities, potential cyber-attacks with impact assessment, detection & defense approaches, and cyber-secure resilient control strategies is currently lacking in the literature. This review paper fills the gap by providing a comprehensive up-to-date review of cyber-physical security for BASs at three levels in commercial buildings: management level, automation level, and field level. The general BASs vulnerabilities and protocol-specific vulnerabilities for the four dominant BAS protocols are reviewed, followed by a discussion on four attack targets and seven potential attack scenarios. The impact of cyber-attacks on BASs is summarized as signal corruption, signal delaying, and signal blocking. The typical cyber-attack detection and defense approaches are identified at the three levels. Cyber-secure resilient control strategies for BASs under attack are categorized into passive and active resilient control schemes. Open challenges and future opportunities are finally discussed.Comment: 38 pages, 7 figures, 6 tables, submitted to Annual Reviews in Contro

    Container network functions: bringing NFV to the network edge

    Get PDF
    In order to cope with the increasing network utilization driven by new mobile clients, and to satisfy demand for new network services and performance guarantees, telecommunication service providers are exploiting virtualization over their network by implementing network services in virtual machines, decoupled from legacy hardware accelerated appliances. This effort, known as NFV, reduces OPEX and provides new business opportunities. At the same time, next generation mobile, enterprise, and IoT networks are introducing the concept of computing capabilities being pushed at the network edge, in close proximity of the users. However, the heavy footprint of today's NFV platforms prevents them from operating at the network edge. In this article, we identify the opportunities of virtualization at the network edge and present Glasgow Network Functions (GNF), a container-based NFV platform that runs and orchestrates lightweight container VNFs, saving core network utilization and providing lower latency. Finally, we demonstrate three useful examples of the platform: IoT DDoS remediation, on-demand troubleshooting for telco networks, and supporting roaming of network functions

    Resilience Strategies for Network Challenge Detection, Identification and Remediation

    Get PDF
    The enormous growth of the Internet and its use in everyday life make it an attractive target for malicious users. As the network becomes more complex and sophisticated it becomes more vulnerable to attack. There is a pressing need for the future internet to be resilient, manageable and secure. Our research is on distributed challenge detection and is part of the EU Resumenet Project (Resilience and Survivability for Future Networking: Framework, Mechanisms and Experimental Evaluation). It aims to make networks more resilient to a wide range of challenges including malicious attacks, misconfiguration, faults, and operational overloads. Resilience means the ability of the network to provide an acceptable level of service in the face of significant challenges; it is a superset of commonly used definitions for survivability, dependability, and fault tolerance. Our proposed resilience strategy could detect a challenge situation by identifying an occurrence and impact in real time, then initiating appropriate remedial action. Action is autonomously taken to continue operations as much as possible and to mitigate the damage, and allowing an acceptable level of service to be maintained. The contribution of our work is the ability to mitigate a challenge as early as possible and rapidly detect its root cause. Also our proposed multi-stage policy based challenge detection system identifies both the existing and unforeseen challenges. This has been studied and demonstrated with an unknown worm attack. Our multi stage approach reduces the computation complexity compared to the traditional single stage, where one particular managed object is responsible for all the functions. The approach we propose in this thesis has the flexibility, scalability, adaptability, reproducibility and extensibility needed to assist in the identification and remediation of many future network challenges

    Adversarial behaviours knowledge area

    Full text link
    The technological advancements witnessed by our society in recent decades have brought improvements in our quality of life, but they have also created a number of opportunities for attackers to cause harm. Before the Internet revolution, most crime and malicious activity generally required a victim and a perpetrator to come into physical contact, and this limited the reach that malicious parties had. Technology has removed the need for physical contact to perform many types of crime, and now attackers can reach victims anywhere in the world, as long as they are connected to the Internet. This has revolutionised the characteristics of crime and warfare, allowing operations that would not have been possible before. In this document, we provide an overview of the malicious operations that are happening on the Internet today. We first provide a taxonomy of malicious activities based on the attacker’s motivations and capabilities, and then move on to the technological and human elements that adversaries require to run a successful operation. We then discuss a number of frameworks that have been proposed to model malicious operations. Since adversarial behaviours are not a purely technical topic, we draw from research in a number of fields (computer science, criminology, war studies). While doing this, we discuss how these frameworks can be used by researchers and practitioners to develop effective mitigations against malicious online operations.Published versio

    A survey of defense mechanisms against distributed denial of service (DDOS) flooding attacks

    Get PDF
    Distributed Denial of Service (DDoS) flooding attacks are one of the biggest concerns for security professionals. DDoS flooding attacks are typically explicit attempts to disrupt legitimate users' access to services. Attackers usually gain access to a large number of computers by exploiting their vulnerabilities to set up attack armies (i.e., Botnets). Once an attack army has been set up, an attacker can invoke a coordinated, large-scale attack against one or more targets. Developing a comprehensive defense mechanism against identified and anticipated DDoS flooding attacks is a desired goal of the intrusion detection and prevention research community. However, the development of such a mechanism requires a comprehensive understanding of the problem and the techniques that have been used thus far in preventing, detecting, and responding to various DDoS flooding attacks. In this paper, we explore the scope of the DDoS flooding attack problem and attempts to combat it. We categorize the DDoS flooding attacks and classify existing countermeasures based on where and when they prevent, detect, and respond to the DDoS flooding attacks. Moreover, we highlight the need for a comprehensive distributed and collaborative defense approach. Our primary intention for this work is to stimulate the research community into developing creative, effective, efficient, and comprehensive prevention, detection, and response mechanisms that address the DDoS flooding problem before, during and after an actual attack. © 1998-2012 IEEE

    Mobile Firewall System For Distributed Denial Of Service Defense In Internet Of Things Networks

    Get PDF
    Internet of Things (IoT) has seen unprecedented growth in the consumer space over the past ten years. The majority of IoT device manufacturers do not, however, build their products with cybersecurity in mind. The goal of the mobile firewall system is to move mitigation of network-diffused attacks closer to their source. Attack detection and mitigation is enforced using a machine that physically traverses the area. This machine uses a suite of security tools to protect the network. Our system provides advantages over current network attack mitigation techniques. Mobile firewalls can be deployed when there is no access to the network gateway or when no gateway exists, such as in IoT mesh networks. The focus of this thesis is to refine an explicit implementation for the mobile firewall system and evaluate its effectiveness. Evaluation of the mobile firewall system is analyzed using three simulated distributed denial of service case studies. Mobility is shown to be a great benefit when defending against physically distant attackers – the system takes no more than 131 seconds to fully nullify a worst-case attack

    Resilience support in software-defined networking:a survey

    Get PDF
    Software-defined networking (SDN) is an architecture for computer networking that provides a clear separation between network control functions and forwarding operations. The abstractions supported by this architecture are intended to simplify the implementation of several tasks that are critical to network operation, such as routing and network management. Computer networks have an increasingly important societal role, requiring them to be resilient to a range of challenges. Previously, research into network resilience has focused on the mitigation of several types of challenges, such as natural disasters and attacks. Capitalizing on its benefits, including increased programmability and a clearer separation of concerns, significant attention has recently focused on the development of resilience mechanisms that use software-defined networking approaches. In this article, we present a survey that provides a structured overview of the resilience support that currently exists in this important area. We categorize the most recent research on this topic with respect to a number of resilience disciplines. Additionally, we discuss the lessons learned from this investigation, highlight the main challenges faced by SDNs moving forward, and outline the research trends in terms of solutions to mitigate these challenges
    • 

    corecore