2,975 research outputs found

    Capturing cultural differences between UK and Malaysian drivers to inform the design of in-vehicle navigation systems

    Get PDF
    Attending to cultural diversity is important for products and technology intended for global placement, such as automobiles, yet many products (and associated interfaces) lack genuine cultural differentiation. For example, in-vehicle navigation systems are typically identical in form and function across world markets, differing only in the local language and map database. To capture and explore culturally-salient design factors, we utilised a scenario-based design methodology, involving 6 experienced drivers from the UK and Malaysia. Participants were asked to portray their ideal navigation system interface designs – by drawing pictograms and devising accompanying spoken messages – to direct drivers along 3 prescribed routes in the UK, Malaysia and Japan. Routes were presented using video and paper maps, with the order of presentation counterbalanced between groups; participants were not told in advance from which country each route was derived. Proposed designs highlight differences at a country level, which are consequently interpreted from a cultural perspective. For example, Malaysian drivers included a higher density of navigational elements in their designs, particularly in their home environment, compared to UK drivers. Malaysian drivers also created more incremental designs, particularly on the approach to a manoeuvre, suggesting a desire for greater navigational support at this point in the journey. Landmarks were consistently incorporated in designs, but differences were noted in cultural salience. Additionally, the phrasing of instructions (e.g. “go straight on”), nomenclature for road elements (e.g. ‘roundabout’) and distance declaration conventions (e.g. units) differed at a country level. The findings can be used to inform the design of culturally-attuned in-vehicle navigation systems

    What If Your Car Would Care? Exploring Use Cases For Affective Automotive User Interfaces

    Full text link
    In this paper we present use cases for affective user interfaces (UIs) in cars and how they are perceived by potential users in China and Germany. Emotion-aware interaction is enabled by the improvement of ubiquitous sensing methods and provides potential benefits for both traffic safety and personal well-being. To promote the adoption of affective interaction at an international scale, we developed 20 mobile in-car use cases through an inter-cultural design approach and evaluated them with 65 drivers in Germany and China. Our data shows perceived benefits in specific areas of pragmatic quality as well as cultural differences, especially for socially interactive use cases. We also discuss general implications for future affective automotive UI. Our results provide a perspective on cultural peculiarities and a concrete starting point for practitioners and researchers working on emotion-aware interfaces

    Capturing cultural differences between UK and Malaysian drivers to inform the design of in-vehicle navigation systems

    Get PDF
    Attending to cultural diversity is important for products and technology intended for global placement, such as automobiles, yet many products (and associated interfaces) lack genuine cultural differentiation. For example, in-vehicle navigation systems are typically identical in form and function across world markets, differing only in the local language and map database. To capture and explore culturally-salient design factors, we utilised a scenario-based design methodology, involving 6 experienced drivers from the UK and Malaysia. Participants were asked to portray their ideal navigation system interface designs – by drawing pictograms and devising accompanying spoken messages – to direct drivers along 3 prescribed routes in the UK, Malaysia and Japan. Routes were presented using video and paper maps, with the order of presentation counterbalanced between groups; participants were not told in advance from which country each route was derived. Proposed designs highlight differences at a country level, which are consequently interpreted from a cultural perspective. For example, Malaysian drivers included a higher density of navigational elements in their designs, particularly in their home environment, compared to UK drivers. Malaysian drivers also created more incremental designs, particularly on the approach to a manoeuvre, suggesting a desire for greater navigational support at this point in the journey. Landmarks were consistently incorporated in designs, but differences were noted in cultural salience. Additionally, the phrasing of instructions (e.g. “go straight on”), nomenclature for road elements (e.g. ‘roundabout’) and distance declaration conventions (e.g. units) differed at a country level. The findings can be used to inform the design of culturally-attuned in-vehicle navigation systems

    Designing for adaptability in architecture

    Get PDF
    The research is framed on the premise that designing buildings that can adapt by accommodating change easier and more cost-effectively provides an effective means to a desired end a more sustainable built environment. In this context, adaptability can be viewed as a means to decrease the amount of new construction (reduce), (re)activate underused or vacant building stock (reuse) and enhance disassembly/ deconstruction of components (reuse, recycle) - prolonging the useful life of buildings (reduce, reuse, recycle). The aim of the research is to gain a holistic overview of the concept of adaptability in the construction industry and provide an improved framework to design for, deploy and implement adaptability. An over-arching research question was posited to guide the inquiry: how can architects understand, communicate, design for and test the concept of adaptability in the context of the design process? The research followed Dubois and Gadde s (2002) systematic combining as an over-arching approach that continuously moves between the empirical world and theoretical models allowing the co-evolution of data collection and theory from the beginning as part of a non-linear process with the objective of matching theory with reality. An initial framework was abducted from a preliminary collection of data from which a set of mixed research methods was deployed to explore adaptability (interviews, building case studies, dependency structural matrices, practitioner surveys and workshop). Emergent from the data is an expanded and revised theory on designing for adaptability consisting of concepts, models and propositions. The models illustrate many of the casual links between the physical design structure of the building (e.g. plan depth, storey height) and the soft contingencies of a messy design/construction/occupation process (e.g. procurement route, funding methods, stakeholder mindsets). In an effort to enhance building adaptability, the abducted propositions suggest a shift in the way the industry values buildings and conducts aspects of the design process and how designer s approach designing for adaptability

    Network e-Volution

    Full text link
    Modern society is a network society permeated by information technology (IT). As a result of innovations in IT, enormous amounts of information can be communicated to a larger number of recipients faster than ever before. The evolution of networks is heavily influenced by the extensive use of IT, which has enabled co-evolving advanced quantitative and qualitative forms of networking. Although several networks have been formed with the aim to reduce or deal with uncertainty through faster and broader access to information, it is in fact IT that has created new kinds of uncertainty. For instance, although digital information integration in supply chains has made production planning more robust, it has at the same time intensified mutual dependencies, thereby actually increasing the level of uncertainty. The aim of this working paper is to investigate the aspects of evolving networks and uncertainty in networks at the cutting edges of different types of networks and from the perspective of different layers defining these networks

    Road2CPS priorities and recommendations for research and innovation in cyber-physical systems

    Get PDF
    This document summarises the findings of the Road2CPS project, co-financed by the European Commission under the H2020 Research and Innovation Programme, to develop a roadmap and recommendations for strategic action required for future deployment of Cyber-Physical Systems (CPS). The term Cyber-Physical System describes hardware-software systems, which tightly couple the physical world and the virtual world. They are established from networked embedded systems that are connected with the outside world through sensors and actuators and have the capability to collaborate, adapt, and evolve. In the ARTEMIS Strategic Research Agenda 2016, CPS are described as ‘Embedded Intelligent ICT Systems’ that make products smarter, more interconnected, interdependent, collaborative, and autonomous. In the future world of CPS, a huge number of devices connected to the physical world will be able to exchange data with each other, access web services, and interact with people. Moreover, information systems will sense, monitor and even control the physical world via Cyber-Physical Systems and the Internet of Things (HiPEAC Vision 2015). Cyber-Physical Systems find their application in many highly relevant areas to our society: multi-modal transport, health, smart factories, smart grids and smart cities amongst others. The deployment of Cyber-Physical Systems (CPS) is expected to increase substantially over the next decades, holding great potential for novel applications and innovative product development. Digital technologies have already pervaded day-to-day life massively, affecting all kinds of interactions between humans and their environment. However, the inherent complexity of CPSs, as well as the need to meet optimised performance and comply with essential requirements like safety, privacy, security, raises many questions that are currently being explored by the research community. Road2CPS aims at accelerating uptake and implementation of these efforts. The Road2CPS project identifying and analysing the relevant technology fields and related research priorities to fuel the development of trustworthy CPS, as well as the specific technologies, needs and barriers for a successful implementation in different application domains and to derive recommendations for strategic action. The document at hand was established through an interactive, community-based approach, involving over 300 experts from academia, industry and policy making through a series of workshops and consultations. Visions and priorities of recently produced roadmaps in the area of CPS, IoT (Internet of Things), SoS (System-of-Systems) and FoF (Factories of the Future) were discussed, complemented by sharing views and perspectives on CPS implementation in application domains, evolving multi-sided eco-systems as well as business and policy related barriers, enablers and success factors. From the workshops and accompanying activities recommendations for future research and innovation activities were derived and topics and timelines for their implementation proposed. Amongst the technological topics, and related future research priorities ‘integration, interoperability, standards’ ranged highest in all workshops. The topic is connected to digital platforms and reference architectures, which have already become a key priority theme for the EC and their Digitisation Strategy as well as the work on the right standards to help successful implementation of CPSs. Other themes of very high technology/research relevance revealed to be ‘modelling and simulation’, ‘safety and dependability’, ‘security and privacy’, ‘big data and real-time analysis’, ‘ubiquitous autonomy and forecasting’ as well as ‘HMI/human machine awareness’. Next to this, themes emerged including ‘decision making and support’, ‘CPS engineering (requirements, design)’, ‘CPS life-cycle management’, ‘System-of-Systems’, ‘distributed management’, ‘cognitive CPS’, ‘emergence, complexity, adaptability and flexibility’ and work on the foundations of CPS and ‘cross-disciplinary research/CPS Science’

    Universal Design and Visitability: from Accessibility to Zoning

    Get PDF
    National Endowment for the Art

    A Theory and Practice of Website Engagibility

    Get PDF
    This thesis explores the domain of website quality. It presents a new study of website quality - an abstraction and synthesis, a measurement methodology, and analysis - and proposes metrics which can be used to quantify it. The strategy employed involved revisiting software quality, modelling its broader perspectives and identifying quality factors which are specific to the World Wide Web (WWW). This resulted in a detailed set of elements which constitute website quality, a method for quantifying a quality measure, and demonstrating an approach to benchmarking eCommerce websites. The thesis has two dimensions. The first is a contribution to the theory of software quality - specifically website quality. The second dimension focuses on two perspectives of website quality - quality-of-product and quality-of-use - and uses them to present a new theory and methodology which are important first steps towards understanding metrics and their use when quantifying website quality. Once quantified, the websites can be benchmarked by evaluators and website owners for comparison with competitor sites. The thesis presents a study of five mature eCommerce websites. The study involves identifying, defining and collecting data counts for 67 site-level criteria for each site. These counts are specific to website product quality and include criteria such as occurrences of hyperlinks and menus which underpin navigation, occurrences of activities which underpin interactivity, and counts relating to a site’s eCommerce maturity. Lack of automated count collecting tools necessitated online visits to 537 HTML pages and performing manual counts. The thesis formulates a new approach to measuring website quality, named Metric Ratio Analysis (MRA). The thesis demonstrates how one website quality factor - engagibility - can be quantified and used for website comparison analysis. The thesis proposes a detailed theoretical and empirical validation procedure for MRA
    • 

    corecore