48,535 research outputs found

    NTU RGB+D 120: A Large-Scale Benchmark for 3D Human Activity Understanding

    Full text link
    Research on depth-based human activity analysis achieved outstanding performance and demonstrated the effectiveness of 3D representation for action recognition. The existing depth-based and RGB+D-based action recognition benchmarks have a number of limitations, including the lack of large-scale training samples, realistic number of distinct class categories, diversity in camera views, varied environmental conditions, and variety of human subjects. In this work, we introduce a large-scale dataset for RGB+D human action recognition, which is collected from 106 distinct subjects and contains more than 114 thousand video samples and 8 million frames. This dataset contains 120 different action classes including daily, mutual, and health-related activities. We evaluate the performance of a series of existing 3D activity analysis methods on this dataset, and show the advantage of applying deep learning methods for 3D-based human action recognition. Furthermore, we investigate a novel one-shot 3D activity recognition problem on our dataset, and a simple yet effective Action-Part Semantic Relevance-aware (APSR) framework is proposed for this task, which yields promising results for recognition of the novel action classes. We believe the introduction of this large-scale dataset will enable the community to apply, adapt, and develop various data-hungry learning techniques for depth-based and RGB+D-based human activity understanding. [The dataset is available at: http://rose1.ntu.edu.sg/Datasets/actionRecognition.asp]Comment: IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI

    Fast human motion prediction for human-robot collaboration with wearable interfaces

    Full text link
    In this paper, we aim at improving human motion prediction during human-robot collaboration in industrial facilities by exploiting contributions from both physical and physiological signals. Improved human-machine collaboration could prove useful in several areas, while it is crucial for interacting robots to understand human movement as soon as possible to avoid accidents and injuries. In this perspective, we propose a novel human-robot interface capable to anticipate the user intention while performing reaching movements on a working bench in order to plan the action of a collaborative robot. The proposed interface can find many applications in the Industry 4.0 framework, where autonomous and collaborative robots will be an essential part of innovative facilities. A motion intention prediction and a motion direction prediction levels have been developed to improve detection speed and accuracy. A Gaussian Mixture Model (GMM) has been trained with IMU and EMG data following an evidence accumulation approach to predict reaching direction. Novel dynamic stopping criteria have been proposed to flexibly adjust the trade-off between early anticipation and accuracy according to the application. The output of the two predictors has been used as external inputs to a Finite State Machine (FSM) to control the behaviour of a physical robot according to user's action or inaction. Results show that our system outperforms previous methods, achieving a real-time classification accuracy of 94.3±2.9%94.3\pm2.9\% after 160.0msec±80.0msec160.0msec\pm80.0msec from movement onset

    Smoothness perception : investigation of beat rate effect on frame rate perception

    Get PDF
    Despite the complexity of the Human Visual System (HVS), research over the last few decades has highlighted a number of its limitations. These limitations can be exploited in computer graphics to significantly reduce computational cost and thus required rendering time, without a viewer perceiving any difference in resultant image quality. Furthermore, cross-modal interaction between different modalities, such as the influence of audio on visual perception, has also been shown as significant both in psychology and computer graphics. In this paper we investigate the effect of beat rate on temporal visual perception, i.e. frame rate perception. For the visual quality and perception evaluation, a series of psychophysical experiments was conducted and the data analysed. The results indicate that beat rates in some cases do affect temporal visual perception and that certain beat rates can be used in order to reduce the amount of rendering required to achieve a perceptual high quality. This is another step towards a comprehensive understanding of auditory-visual cross-modal interaction and could be potentially used in high-fidelity interactive multi-sensory virtual environments

    ModDrop: adaptive multi-modal gesture recognition

    Full text link
    We present a method for gesture detection and localisation based on multi-scale and multi-modal deep learning. Each visual modality captures spatial information at a particular spatial scale (such as motion of the upper body or a hand), and the whole system operates at three temporal scales. Key to our technique is a training strategy which exploits: i) careful initialization of individual modalities; and ii) gradual fusion involving random dropping of separate channels (dubbed ModDrop) for learning cross-modality correlations while preserving uniqueness of each modality-specific representation. We present experiments on the ChaLearn 2014 Looking at People Challenge gesture recognition track, in which we placed first out of 17 teams. Fusing multiple modalities at several spatial and temporal scales leads to a significant increase in recognition rates, allowing the model to compensate for errors of the individual classifiers as well as noise in the separate channels. Futhermore, the proposed ModDrop training technique ensures robustness of the classifier to missing signals in one or several channels to produce meaningful predictions from any number of available modalities. In addition, we demonstrate the applicability of the proposed fusion scheme to modalities of arbitrary nature by experiments on the same dataset augmented with audio.Comment: 14 pages, 7 figure

    Cross-Modal Message Passing for Two-stream Fusion

    Full text link
    Processing and fusing information among multi-modal is a very useful technique for achieving high performance in many computer vision problems. In order to tackle multi-modal information more effectively, we introduce a novel framework for multi-modal fusion: Cross-modal Message Passing (CMMP). Specifically, we propose a cross-modal message passing mechanism to fuse two-stream network for action recognition, which composes of an appearance modal network (RGB image) and a motion modal (optical flow image) network. The objectives of individual networks in this framework are two-fold: a standard classification objective and a competing objective. The classification object ensures that each modal network predicts the true action category while the competing objective encourages each modal network to outperform the other one. We quantitatively show that the proposed CMMP fuses the traditional two-stream network more effectively, and outperforms all existing two-stream fusion method on UCF-101 and HMDB-51 datasets.Comment: 2018 IEEE International Conference on Acoustics, Speech and Signal Processin

    Synthesis of variable dancing styles based on a compact spatiotemporal representation of dance

    Get PDF
    Dance as a complex expressive form of motion is able to convey emotion, meaning and social idiosyncrasies that opens channels for non-verbal communication, and promotes rich cross-modal interactions with music and the environment. As such, realistic dancing characters may incorporate crossmodal information and variability of the dance forms through compact representations that may describe the movement structure in terms of its spatial and temporal organization. In this paper, we propose a novel method for synthesizing beatsynchronous dancing motions based on a compact topological model of dance styles, previously captured with a motion capture system. The model was based on the Topological Gesture Analysis (TGA) which conveys a discrete three-dimensional point-cloud representation of the dance, by describing the spatiotemporal variability of its gestural trajectories into uniform spherical distributions, according to classes of the musical meter. The methodology for synthesizing the modeled dance traces back the topological representations, constrained with definable metrical and spatial parameters, into complete dance instances whose variability is controlled by stochastic processes that considers both TGA distributions and the kinematic constraints of the body morphology. In order to assess the relevance and flexibility of each parameter into feasibly reproducing the style of the captured dance, we correlated both captured and synthesized trajectories of samba dancing sequences in relation to the level of compression of the used model, and report on a subjective evaluation over a set of six tests. The achieved results validated our approach, suggesting that a periodic dancing style, and its musical synchrony, can be feasibly reproduced from a suitably parametrized discrete spatiotemporal representation of the gestural motion trajectories, with a notable degree of compression
    • …
    corecore